Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America.
PLoS One. 2011;6(9):e25639. doi: 10.1371/journal.pone.0025639. Epub 2011 Sep 27.
Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiologically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed 2-2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.
可卡因线索关联会在杏仁核中诱导突触可塑性,从而产生长期的分子和细胞变化,而杏仁核是与线索相关的记忆机制的关键部位。潜在的神经适应包括多巴胺 (DA) 受体 (DR) 和代谢型谷氨酸 (Glu) 受体 (mGluR) 信号的显著改变。之前,我们报道过 DR 拮抗剂可阻断从反复可卡因给药中撤回的 Sprague-Dawley 大鼠杏仁核切片中的突触可塑性形式。在本研究中,我们研究了外源性 DA 诱导的突触可塑性及其对 mGluR 信号的依赖性,以及磷脂酶 D (PLD) 作为与 mGluR 和 DR 信号相关的下游元件的潜在作用。我们利用改良的条件性位置偏好 (CPP) 范式作为功能行为测量,研究了最后一次可卡因条件作用后两周的神经生理效应。我们记录了在外侧杏仁核基底外侧到外侧 capsula 中央杏仁核 (BLA-lcCeA) 突触通路中,DR 诱导的突触增强作用,该作用被 I 组 mGluR 拮抗剂阻断,特别是与 PLD 相关的 mGluR。此外,我们观察到 PLD 表达增加 2-2.5 倍,基础 PLD 酶活性增加 3.7 倍。增强的 PLD 活性可以进一步被 DA D1 样 (D1/5R) 受体激动剂刺激 (9.3 倍),并通过 mGluR1 和与 PLD 相关的 mGluR 拮抗剂降低至对照水平。在最后一次可卡因注射后两周,在测试前 15 分钟将与 PLD 相关的 mGluR 拮抗剂 PCCG-13 输注到杏仁核中,观察到 CPP 减少。这些结果表明,在与可卡因线索相关的杏仁核突触可塑性中,D1/5Rs 和 I 组 mGluR 之间存在功能相互作用,通过 PLD。