Krishnan Balaji, Kayed Rakez, Taglialatela Giulio
UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA.
Alzheimers Dement (N Y). 2018 Feb 14;4:89-102. doi: 10.1016/j.trci.2018.01.002. eCollection 2018.
Phospholipase D (PLD), a lipolytic enzyme that breaks down membrane phospholipids, is also involved in signaling mechanisms downstream of seven transmembrane receptors. Abnormally elevated levels of PLD activity are well-established in Alzheimer's disease (AD), implicating the two isoforms of mammalian phosphatidylcholine cleaving PLD (PC-PLD1 and PC-PLD2). Therefore, we took a systematic approach of investigating isoform-specific expression in human synaptosomes and further investigated the possibility of therapeutic intervention using preclinical studies.
Synaptosomal Western blot analyses on the postmortem human hippocampus, temporal cortex, and frontal cortex of AD patient brains/age-matched controls and the 3XTg-AD mice hippocampus (mouse model with overexpression of human amyloid precursor protein, presenilin-1 gene, and microtubule-associated protein tau causing neuropathology progressing comparable to that in human AD patients) were used to detect the levels of neuronal PLD1 expression. Mouse hippocampal long-term potentiation of PLD1-dependent changes was studied using pharmacological approaches in slice preparations from wild-type and transgenic mouse models. Finally, PLD1-dependent changes in novel object recognition memory were assessed following PLD1 inhibition.
We observed elevated synaptosomal PLD1 in the hippocampus/temporal cortex from postmortem tissues of AD patients compared to age-matched controls and age-dependent hippocampal PLD1 increases in 3XTg-AD mice. PLD1 inhibition blocked effects of oligomeric amyloid β or toxic oligomeric tau species on high-frequency stimulation long-term potentiation and novel object recognition deficits in wild-type mice. Finally, PLD1 inhibition blocked long-term potentiation deficits normally observed in aging 3XTg-AD mice.
Using human studies, we propose a novel role for PLD1-dependent signaling as a critical mechanism underlying oligomer-driven synaptic dysfunction and consequent memory disruption in AD. We, further, provide the first set of preclinical studies toward future therapeutics targeting PLD1 in slowing down/stopping the progression of AD-related memory deficits as a complementary approach to immunoscavenging clinical trials that are currently in progress.
磷脂酶D(PLD)是一种分解膜磷脂的脂解酶,也参与七跨膜受体下游的信号传导机制。在阿尔茨海默病(AD)中,PLD活性异常升高已得到充分证实,这涉及哺乳动物磷脂酰胆碱裂解PLD的两种同工型(PC-PLD1和PC-PLD2)。因此,我们采用系统的方法研究人突触体中同工型特异性表达,并通过临床前研究进一步探讨治疗干预的可能性。
对AD患者脑/年龄匹配对照的死后人类海马体、颞叶皮质和额叶皮质以及3XTg-AD小鼠海马体(一种过表达人类淀粉样前体蛋白、早老素-1基因和微管相关蛋白tau导致神经病理学进展与人类AD患者相当的小鼠模型)进行突触体蛋白质免疫印迹分析,以检测神经元PLD1的表达水平。使用药理学方法在野生型和转基因小鼠模型的脑片制备中研究小鼠海马体中PLD1依赖性变化的长时程增强。最后,在抑制PLD1后评估新物体识别记忆中PLD1依赖性变化。
我们观察到,与年龄匹配对照相比,AD患者死后组织海马体/颞叶皮质中的突触体PLD1升高,且3XTg-AD小鼠海马体中PLD1随年龄增加。抑制PLD1可阻断野生型小鼠中寡聚淀粉样β或有毒寡聚tau蛋白对高频刺激长时程增强和新物体识别缺陷的影响。最后,抑制PLD1可阻断通常在衰老的3XTg-AD小鼠中观察到的长时程增强缺陷。
通过人体研究,我们提出PLD1依赖性信号传导作为AD中寡聚体驱动的突触功能障碍及随之而来的记忆破坏的关键机制的新作用。此外,我们提供了第一组临床前研究,旨在未来针对PLD1的治疗,以减缓/阻止AD相关记忆缺陷的进展,作为目前正在进行的免疫清除临床试验的补充方法。