Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA.
Cell Stem Cell. 2011 Oct 4;9(4):366-73. doi: 10.1016/j.stem.2011.07.018.
The biomedical utility of induced pluripotent stem cells (iPSCs) will be diminished if most iPSC lines harbor deleterious genetic mutations. Recent microarray studies have shown that human iPSCs carry elevated levels of DNA copy number variation compared with those in embryonic stem cells, suggesting that these and other classes of genomic structural variation (SV), including inversions, smaller duplications and deletions, complex rearrangements, and retroelement transpositions, may frequently arise as a consequence of reprogramming. Here we employ whole-genome paired-end DNA sequencing and sensitive mapping algorithms to identify all classes of SV in three fully pluripotent mouse iPSC lines. Despite the improved scope and resolution of this study, we find few spontaneous mutations per line (one or two) and no evidence for endogenous retroelement transposition. These results show that genome stability can persist throughout reprogramming, and argue that it is possible to generate iPSCs lacking gene-disrupting mutations using current reprogramming methods.
如果大多数诱导多能干细胞 (iPSC) 系携带有害的基因突变,那么它们在生物医学上的应用价值将会降低。最近的微阵列研究表明,与胚胎干细胞相比,人类 iPSC 携带更高水平的 DNA 拷贝数变异,这表明这些和其他类别的基因组结构变异 (SV),包括倒位、较小的重复和缺失、复杂重排以及逆转座元件转位,可能经常作为重编程的结果而出现。在这里,我们采用全基因组配对末端 DNA 测序和灵敏的映射算法来鉴定三个完全多能性的小鼠 iPSC 系中的所有 SV 类别。尽管本研究的范围和分辨率有所提高,但我们每条线(一到两条)只发现少数自发突变,也没有内源性逆转座元件转位的证据。这些结果表明,基因组稳定性可以在整个重编程过程中保持,并且证明使用当前的重编程方法有可能产生没有基因破坏突变的 iPSC。