Suppr超能文献

利用纳米点阵列对心肌细胞 H9c2 的生长和功能进行地形控制。

Topographic control of the growth and function of cardiomyoblast H9c2 cells using nanodot arrays.

机构信息

Graduate Program for Nanotechnology, Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, ROC.

出版信息

Biomaterials. 2012 Jan;33(1):20-8. doi: 10.1016/j.biomaterials.2011.09.054. Epub 2011 Oct 6.

Abstract

Cardiovascular stents require optimised control for the enhancement or inhibition epithelial and smooth muscle cell growth in close contact with the implant. Here we propose that the surface topology in contact with the living cells could be designed to control and optimise the growth and function of such cells. The cardiomyoblast H9c2 was cultured on nanodot arrays with dot diameters ranging between 10 and 200 nm. On the 50-nm nanodot arrays H9c2 showed maximum attachment and proliferation with largest cell area and extended lamellipodia. In contrast, 53.7% and 72.6% reductions of growth were observed on the 100- and 200-nm nanodot arrays after 3 days. Immunostaining indicated that nanodots smaller than 50-nm induced cell adhesion and cytoskeleton organization. Expression of genes associated with fibrosis and hypertrophy was up-regulated in cells grown on 100-nm nanodots. Western blot data showed high levels of expression for vinculin and plasminogen activator inhibitor-1 for cells cultured on 50-nm nanodots. Nanotopography controls cell adhesion, morphology and proliferation. By adjusting the diameter of the nanodots, we could modulate the growth and expression of function-related genes and proteins of H9c2 cardiomyoblasts. The current study provides insights for improved design of artificial implants and parameters that affect biocompatibility.

摘要

心血管支架需要优化控制,以促进或抑制与植入物紧密接触的上皮和平滑肌细胞的生长。在这里,我们提出与活细胞接触的表面拓扑结构可以设计来控制和优化这些细胞的生长和功能。心肌细胞 H9c2 培养在直径为 10 至 200nm 的纳米点阵列上。在 50nm 的纳米点阵列上,H9c2 表现出最大的附着和增殖,具有最大的细胞面积和扩展的片状伪足。相比之下,在 100nm 和 200nm 的纳米点阵列上,培养 3 天后的生长分别减少了 53.7%和 72.6%。免疫染色表明,小于 50nm 的纳米点诱导细胞黏附和细胞骨架组织。在 100nm 纳米点上生长的细胞中,与纤维化和肥大相关的基因表达上调。Western blot 数据显示,培养在 50nm 纳米点上的细胞中,粘着斑蛋白和纤溶酶原激活物抑制剂-1 的表达水平较高。纳米拓扑结构控制细胞黏附、形态和增殖。通过调整纳米点的直径,我们可以调节 H9c2 心肌细胞的生长和功能相关基因和蛋白的表达。本研究为改进人工植入物的设计和影响生物相容性的参数提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验