West Virginia University, Department of Community Medicine and Injury Control Research Center, Morgantown, USA.
Ann Epidemiol. 2011 Nov;21(11):830-4. doi: 10.1016/j.annepidem.2011.08.003.
A common research interest is to identify whether there is an increasing or decreasing trend for various health-related conditions over time in national complex surveys. We examined whether standard errors from conventional regression approaches appear accurate for trend analysis of complex surveys.
We re-conducted a trend analysis of the national emergency department visit rate from 1997 through 2007 published recently in JAMA. We compared standard errors from classical weighted least squares (CWLS), generalized estimating equation (GEE), information-weighted least squares (IWLS) regression, and nonparametric bootstrapping.
The standard errors of the slope estimates from CWLS regression (0.88 per 1000 person-years) and from GEE regression (0.87 per 1000 person-years) were less than half the standard error from IWLS regression (1.98 per 1000 person-years). Nonparametric bootstrapping replicated the IWLS result. The p-value for trend from CWLS was only .002 and the GEE p-value was .00002, both much smaller than the p-value of .09 from IWLS.
In ecologic time-trend analyses, standard errors from CWLS and GEE can be much too small. For these settings, IWLS provides more reliable inferential statistics.
一个常见的研究兴趣是确定在国家综合调查中,随着时间的推移,各种与健康相关的状况是否呈上升或下降趋势。我们研究了传统回归方法的标准误差是否适用于复杂调查的趋势分析。
我们重新进行了最近在《美国医学会杂志》上发表的 1997 年至 2007 年期间国家急诊就诊率趋势分析。我们比较了经典加权最小二乘法(CWLS)、广义估计方程(GEE)、信息加权最小二乘法(IWLS)回归和非参数自举的标准误差。
CWLS 回归(每 1000 人年 0.88)和 GEE 回归(每 1000 人年 0.87)的斜率估计标准误差小于 IWLS 回归(每 1000 人年 1.98)的标准误差的一半。非参数自举复制了 IWLS 的结果。CWLS 的趋势 p 值仅为.002,GEE 的 p 值为.00002,均远小于 IWLS 的 p 值.09。
在生态学时间趋势分析中,CWLS 和 GEE 的标准误差可能太小。对于这些设置,IWLS 提供了更可靠的推断统计。