Suppr超能文献

一种用于提高地理可视化分析效用的工作流学习模型。

A workflow learning model to improve geovisual analytics utility.

作者信息

Roth Robert E, Maceachren Alan M, McCabe Craig A

机构信息

GeoVISTA Center, Department of Geography The Pennsylvania State University 302 Walker Building, University Park, PA 16802.

出版信息

Proc Int Cartogr Conf. 2009.

Abstract

INTRODUCTION

This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. RESULTS/CONCLUSIONS: In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009.

摘要

引言

本文描述了G-EX门户学习模块的设计与实现,这是一个基于网络的地理协作应用程序,用于组织和分发数字学习工件。G-EX属于地理可视化分析这一更广泛的范畴,地理可视化分析是一个新的研究领域,其目标是支持对大量、多变量、时空信息进行视觉介导的推理。由于这类信息在数量和复杂性上都是前所未有的,地理信息科学家的任务是开发新的工具和技术来理解它。我们的研究致力于以一种有用的方式应对实施这些地理可视化分析工具和技术的挑战。

目标

本文的目标是开发并实现一种提高地理可视化分析软件实用性的方法。软件的成功通过其可用性(即软件使用起来有多容易?)和实用性(即软件有多有用)来衡量。可以通过优化软件、增加用户对软件的了解或两者兼而有之来提高软件的可用性和实用性。由于所包含的工具和技术具有内在的复杂性,很难实现地理可视化分析软件的透明可用性(即无需培训即可立即使用的软件)。在这些情况下,通过提供学习工件来提高用户对软件的了解与对软件本身进行迭代优化同样重要,甚至更为重要。因此,我们提高实用性的方法侧重于对用户进行教育。

方法

此处报告的研究分两步完成。首先,我们开发了一个用于学习地理可视化分析软件的模型。许多现有的数字学习模型仅有助于使用软件完成特定任务,而对其实际应用提供的帮助有限。为了超越关于软件使用的面向任务的学习,我们基于科学工作流的概念提出一种面向过程的学习方法。其次,我们在G-EX门户学习模块中实现了一个界面来展示工作流学习模型。该工作流界面允许用户将上传到G-EX门户的学习工件拖到中央白板上,然后使用文本和绘图工具对工作流进行注释。完成后,用户可以访问组装好的工作流,以了解分析步骤的种类、数量和规模,查看与工作流中每个节点相关联的单个学习工件,并通过相关论坛就整个工作流或单个学习工件提出问题。提供了一个流行病学领域的示例学习工作流来证明该方法的有效性。

结果/结论:在地理可视化分析的背景下,地理信息科学家不仅负责开发软件以促进对大型和复杂时空信息的视觉介导推理,还负责确保该软件能够正常运行。本文讨论并在G-EX门户学习模块中展示的工作流学习模型是提高地理可视化分析软件实用性的一种方法。虽然G-EX门户学习模块的开发仍在进行中,但我们预计在2009年夏季发布G-EX门户学习模块。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验