Suppr超能文献

用于增强空间扫描统计解释的地理可视化分析:美国宫颈癌死亡率分析

Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality.

作者信息

Chen Jin, Roth Robert E, Naito Adam T, Lengerich Eugene J, Maceachren Alan M

机构信息

GeoVISTA Center, Department of Geography, Pennsylvania State University, University Park, USA.

出版信息

Int J Health Geogr. 2008 Nov 7;7:57. doi: 10.1186/1476-072X-7-57.

Abstract

BACKGROUND

Kulldorff's spatial scan statistic and its software implementation - SaTScan - are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S.

RESULTS

We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results.

CONCLUSION

The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales.

METHOD

We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit.

摘要

背景

Kulldorff的空间扫描统计方法及其软件实现——SaTScan,被广泛用于检测和评估地理集群。然而,有两个问题使得使用该方法并解释其结果并非易事:(1)该方法缺乏在地理背景下理解集群的制图支持;(2)该方法的结果对与集群缩放相关的参数选择(简称为缩放参数)敏感,但系统没有提供进行这些选择的直接支持。我们采用既定的和新颖的地理可视化分析方法来解决这些问题,并加强对SaTScan结果的解释。我们在美国宫颈癌死亡率的案例研究分析中展示了我们的地理可视化分析方法。

结果

我们通过提供一个交互式可视化界面来支持对SaTScan结果的解释,从而解决了第一个问题。我们为解决第二个问题所做的研究引发了关于SaTScan结果对参数选择敏感性的更广泛讨论。敏感性有两个方面:(1)该方法可以识别出虽然具有统计学意义,但内容由高风险和低风险地点组成的异质集群;(2)随着空间扫描缩放参数的变化,该方法可以识别出位置和大小不稳定的集群。为了研究集群结果的稳定性,我们使用系统选择的参数进行了多次SaTScan运行。当扫描一个大型空间数据集(例如,按县汇总的美国数据)时,结果表明,没有一个单一的空间扫描缩放值被认为是识别不同规模存在的集群的最佳值;相反,需要进行多个参数变化的扫描。我们引入了一种测量和可视化可靠性的新颖方法,有助于识别在不同分析尺度上稳定的同质集群。最后我们提出了一种通过分析SaTScan结果的逻辑方法。

结论

本手稿中描述的地理可视化分析方法通过提供SaTScan结果的制图表示,以及提供支持选择SaTScan参数的可视化方法和工具,促进了对空间集群检测方法的解释。我们的方法区分了异质集群和同质集群,并评估了集群在不同分析尺度上的稳定性。

方法

我们分析了2000年至2004年按县汇总的美国宫颈癌死亡率数据。我们对该数据集使用不同的参数选择运行了五十次SaTScan。我们的地理可视化分析方法将SaTScan与我们的可视化分析平台相结合,允许用户交互式地探索和比较不同参数选择产生的SaTScan结果。为所有县可视化标准化死亡率和可靠性得分,以识别稳定的同质集群。我们通过将分析结果与其他独立技术(包括经验贝叶斯平滑法和Kafadar空间平滑法)产生的结果进行比较来评估我们的分析结果。这里介绍的地理可视化分析方法是在我们基于Java的视觉查询工具包中开发和实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc6/2596098/775fbbfb2bf7/1476-072X-7-57-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验