Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, 1871, Copenhagen, Frederiksberg C, Denmark.
Biotechnol Lett. 2012 Feb;34(2):239-45. doi: 10.1007/s10529-011-0768-4. Epub 2011 Oct 8.
The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multifunctional electron carrier that in plants accepts electrons from photosystem I (PSI) and facilitates photoreduction of NADP(+) to NADPH mediated by ferredoxin-NAD(P)H oxidoreductase (FdR). In bacteria, the electron flow is reversed and Fdx accepts electrons from NADPH via FdR and serves as the direct electron donor to bacterial P450s. By combining the two systems, we demonstrate that irradiation of PSI can drive the activity of a bacterial P450, CYP124 from Mycobacterium tuberculosis. The substitution of the costly cofactor NADPH with sunlight illustrates the potential of the light-driven hydroxylation system for biotechnology applications.
细胞色素 P450 酶能够催化高度区域和立体特异性的羟化反应,这使它们成为基于化学合成方法的有吸引力的替代品,但它们需要昂贵的辅助因子,例如 NAD(P)H,这限制了它们的商业潜力。铁氧还蛋白 (Fdx) 是一种多功能电子载体,在植物中,它从光系统 I (PSI) 接受电子,并通过铁氧还蛋白-NAD(P)H 氧化还原酶 (FdR) 促进 NADP(+)的光还原为 NADPH。在细菌中,电子流是反向的,Fdx 通过 FdR 从 NADPH 接受电子,并作为细菌 P450 的直接电子供体。通过结合这两个系统,我们证明 PSI 的照射可以驱动结核分枝杆菌 CYP124 等细菌 P450 的活性。用阳光替代昂贵的辅助因子 NADPH 说明了光驱动羟化系统在生物技术应用中的潜力。