Department of Chemistry, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
Chemphyschem. 2011 Nov 18;12(16):2948-58. doi: 10.1002/cphc.201100341. Epub 2011 Oct 7.
We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability.
我们使用密度泛函(DFT)和耦合簇(CCSD(T))理论对中性和阴离子态的小掺硅硼团簇 B(n)Si(n=1-7)进行了系统研究。这些 B(n)Si(0/-)团簇的全局最小值及其生长机制得到了确定。对于 n≤5 的小 B(n)Si 团簇,平面结构占主导地位。B(6)Si 分子代表了具有准平面几何形状的几何过渡,而第一个 3D 全局最小值则存在于 B(7)Si 团簇中。小的中性 B(n)Si 团簇可以通过用硅原子取代 B(n+1)中的单个硼原子形成。硅原子更喜欢骨架的外部位置,并倾向于与两个相邻的 B 原子形成键。较大的 B(7)Si 团簇是通过在 B(n)主体的对称轴上掺杂硅原子构建的,这导致硅原子通过多个超配位与环硼原子成键。使用高精度 G4 和完全基组外推(CCSD(T)/CBS)方法计算了 B(n)Si(0/-)团簇的热力学性质,如结合能(BE)、在 0 K(ΔH(f)(0))和 298 K(ΔH(f)([298]))时的生成焓、绝热(ADE)和垂直(VDE)离解能以及离解能(D(e))。B(n)Si 团簇的 G4 和 CBS 方法计算的生成焓(0 K)差值在 0.0-4.6 kcal/mol 之间变化。ADE 值的两种方法之间的最大差值为 0.15 eV。我们的理论预测还表明,B(2)Si、B(4)Si、B(3)Si(-)和 B(7)Si(-)是稳定性增强的体系,具有每个双(σ 和 π)芳香性。B(5)Si(-)和 B(6)Si 是双反芳香性(σ 和 π),稳定性较低。