Department of Chemistry and LMCC-Mathematical Modeling and Computational Science Center, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
J Phys Chem A. 2010 Mar 4;114(8):2893-912. doi: 10.1021/jp909512m.
The molecular and electronic structures of a series of small boron monoxide and dioxide clusters B(n)O(m) (n = 5-10, m = 1, 2) plus their anions were predicted. The enthalpies of formation (DeltaH(f)'s), electron affinities (EAs), vertical detachment energies, and energies of different fragmentation processes are predicted using the G3B3 method. The G3B3 results were benchmarked with respect to more accurate CCSD(T)/CBS values for n = 1-4 with average deviations of +/-1.5 kcal/mol for DeltaH(f)'s and +/-0.03 eV for EAs. The results extend previous observations on the growth mechanism for boron oxide clusters: (i) The low spin electronic state is consistently favored. (ii) The most stable structure of a neutral boron monoxide B(n)O is obtained either by condensing O on a BB edge of a B(n) cycle, or by binding one BO group to a B(n-1) ring. The balance between both factors is dependent on the inherent stability of the boron cycles. (iii) A boron dioxide is formed by incorporating the second O atom into the corresponding monoxide to form BO bonds. (iv) A B(n)O(m)(-) anion is constructed with BO groups bound to the B(n-1) or B(n-2) rings (yielding the B(n-2)(BO)(2)(-) species). This becomes the preferred geometry for the larger boron dioxides, even in the neutral state. The boronyl group mainly behaves as an electron-withdrawing substituent reducing the binding energy and resonance energy of the oxides. (v) The boron oxides conserve some of the properties of the parent boron clusters such as the planarity and multiple aromaticity.
一系列小的一氧化碳和二氧化硼团簇 B(n)O(m)(n = 5-10,m = 1,2)及其阴离子的分子和电子结构被预测。使用 G3B3 方法预测了生成焓(DeltaH(f))、电子亲合能(EAs)、垂直离解能以及不同断裂过程的能量。G3B3 结果与 n = 1-4 的更准确的 CCSD(T)/CBS 值进行了基准测试,DeltaH(f)的平均偏差为 +/-1.5 kcal/mol,EAs 的平均偏差为 +/-0.03 eV。结果扩展了先前关于氧化硼团簇生长机制的观察:(i)低自旋电子态始终受到青睐。(ii)中性一氧化碳 B(n)O 的最稳定结构通过将 O 凝结在 B(n)循环的 BB 边缘上,或者通过将一个 BO 基团结合到 B(n-1)环上获得。这两个因素之间的平衡取决于硼环的固有稳定性。(iii)通过将第二个 O 原子引入相应的一氧化物中形成 BO 键来形成二氧化硼。(iv)B(n)O(m)(-)阴离子由结合到 B(n-1)或 B(n-2)环上的 BO 基团构建(生成 B(n-2)(BO)(2)(-)物种)。这成为较大的二氧化硼的首选几何形状,即使在中性状态下也是如此。硼基主要表现为吸电子取代基,降低氧化物的结合能和共振能。(v)氧化硼保留了一些母体硼团簇的性质,如平面性和多芳香性。