Instituto de Estructura de la Materia, IEM-CSIC, Serrano, 123, 28006 Madrid, Spain.
Phys Chem Chem Phys. 2011 Nov 21;13(43):19561-72. doi: 10.1039/c1cp22284h. Epub 2011 Oct 10.
The chemistry in low pressure (0.8-8 Pa) plasmas of H(2) + 10% N(2) mixtures has been experimentally investigated in a hollow cathode dc reactor using electrical probes for the estimation of electron temperatures and densities, and mass spectrometry to determine the concentration of ions and stable neutral species. The analysis of the measurements by means of a kinetic model has allowed the identification of the main physicochemical mechanisms responsible for the observed distributions of neutrals and ions and for their evolution with discharge pressure. The chemistry of neutral species is dominated by the formation of appreciable amounts of NH(3) at the metallic walls of the reactor through the successive hydrogenation of atomic nitrogen and nitrogen containing radicals. Both Eley-Rideal and Langmuir-Hinshelwood mechanisms are needed in the chain of hydrogenation steps in order to account satisfactorily for the observed ammonia concentrations, which, in the steady state, are found to reach values ~30-70% of those of N(2). The ionic composition of the plasma, which is entirely due to gas-phase processes, is the result of a competition between direct electron impact dissociation, more relevant for high electron temperatures (lower pressures), and ion-molecule chemistry that prevails for the lower electron temperatures (higher pressures). At the lowest pressure, products from the protonation of the precursor molecules (H(3)(+), N(2)H(+) and NH(4)(+)) and others from direct ionization (H(2)(+) and NH(3)(+)) are found in comparable amounts. At the higher pressures, the ionic distribution is largely dominated by ammonium. It is found that collisions of H(3)(+), NH(3)(+) and N(2)H(+) with the minor neutral component NH(3) are to a great extent responsible for the final prevalence of NH(4)(+).
在空心阴极直流反应器中,使用电探针估算电子温度和密度,以及质谱仪确定离子和稳定中性物种的浓度,对 H(2) + 10% N(2)混合物在低气压(0.8-8 Pa)等离子体中的化学性质进行了实验研究。通过动力学模型对测量结果进行分析,确定了导致中性和离子分布以及它们随放电压力演变的主要物理化学机制。中性物种的化学性质主要由通过原子氮和含氮自由基的连续加氢在反应器的金属壁上形成可观量的 NH(3)决定。为了令人满意地解释观察到的氨浓度,需要在加氢步骤的链中同时存在 Eley-Rideal 和 Langmuir-Hinshelwood 机制,在稳态下,氨浓度达到 N(2)的 30-70%左右。等离子体的离子组成完全归因于气相过程,是直接电子碰撞离解与离子-分子化学之间竞争的结果,前者在较高电子温度(较低压力)下更为相关,后者在较低电子温度(较高压力)下更为重要。在最低压力下,发现前体分子质子化的产物(H(3)(+)、N(2)H(+)和 NH(4)(+))和其他直接电离产物(H(2)(+)和 NH(3)(+))的量相当。在较高压力下,离子分布主要由铵主导。发现 H(3)(+)、NH(3)(+)和 N(2)H(+)与少量中性组分 NH(3)的碰撞在很大程度上导致 NH(4)(+)的最终优势。