Suppr超能文献

基于密度泛函理论和微观动力学模型的低温等离子体催化合成氨中电场作用的研究

A Study on the Role of Electric Field in Low-Temperature Plasma Catalytic Ammonia Synthesis via Integrated Density Functional Theory and Microkinetic Modeling.

作者信息

Shao Ketong, Mesbah Ali

机构信息

Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States.

出版信息

JACS Au. 2024 Jan 16;4(2):525-544. doi: 10.1021/jacsau.3c00654. eCollection 2024 Feb 26.

Abstract

Low-temperature plasma catalysis has shown promise for various chemical processes such as light hydrocarbon conversion, volatile organic compounds removal, and ammonia synthesis. Plasma-catalytic ammonia synthesis has the potential advantages of leveraging renewable energy and distributed manufacturing principles to mitigate the pressing environmental challenges of the energy-intensive Haber-Bosh process, towards sustainable ammonia production. However, lack of foundational understanding of plasma-catalyst interactions poses a key challenge to optimizing plasma-catalytic processes. Recent studies suggest electro- and photoeffects, such as electric field and charge, can play an important role in enhancing surface reactions. These studies mostly rely on using density functional theory (DFT) to investigate surface reactions under these effects. However, integration of DFT with microkinetic modeling in plasma catalysis, which is crucial for establishing a comprehensive understanding of the interplay between the gas-phase chemistry and surface reactions, remains largely unexplored. This paper presents a first-principles framework coupling DFT calculations and microkinetic modeling to investigate the role of electric field on plasma-catalytic ammonia synthesis. The DFT-microkinetic model shows more consistent predictions with experimental observations, as compared to the case wherein the variable effects of plasma process parameters on surface reactions are neglected. In particular, predictions of the DFT-microkinetic model indicate electric field can have a notable effect on surface reactions relative to other process parameters. A global sensitivity analysis is performed to investigate how ammonia synthesis pathways will change in relation to different plasma process parameters. The DFT-microkinetic model is then used in conjunction with active learning to systematically explore the complex parameter space of the plasma-catalytic ammonia synthesis to maximize the amount of produced ammonia while inhibiting reactions dissipating energy, such as the recombination of H through gas-phase H radicals and surface-adsorbed H. This paper demonstrates the importance of accounting for the effects of electric field on surface reactions when investigating and optimizing the performance of plasma-catalytic processes.

摘要

低温等离子体催化在各种化学过程中展现出了潜力,如轻质烃转化、挥发性有机化合物去除和氨合成。等离子体催化氨合成具有利用可再生能源和分布式制造原理的潜在优势,以应对能源密集型哈伯-博施法带来的紧迫环境挑战,实现可持续氨生产。然而,对等离子体-催化剂相互作用缺乏基本认识是优化等离子体催化过程的关键挑战。最近的研究表明,电场和电荷等电效应和光效应在增强表面反应中可以发挥重要作用。这些研究大多依赖于使用密度泛函理论(DFT)来研究这些效应下的表面反应。然而,在等离子体催化中,将DFT与微观动力学建模相结合,对于全面理解气相化学和表面反应之间的相互作用至关重要,但在很大程度上仍未得到探索。本文提出了一个将DFT计算和微观动力学建模相结合的第一性原理框架,以研究电场在等离子体催化氨合成中的作用。与忽略等离子体过程参数对表面反应的可变效应的情况相比,DFT-微观动力学模型显示出与实验观察结果更一致的预测。特别是,DFT-微观动力学模型的预测表明,相对于其他过程参数,电场对表面反应可能有显著影响。进行了全局敏感性分析,以研究氨合成途径将如何随不同的等离子体过程参数而变化。然后,DFT-微观动力学模型与主动学习相结合,系统地探索等离子体催化氨合成的复杂参数空间,以在抑制诸如通过气相H自由基和表面吸附的H的重组等耗能反应的同时,最大化氨的产量。本文证明了在研究和优化等离子体催化过程的性能时,考虑电场对表面反应的影响的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de12/10900214/eea5ae1b006d/au3c00654_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验