Suppr超能文献

铜绿假单胞菌的群体运动和鼠李糖脂产生的成像和分析。

Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production.

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.

出版信息

Appl Environ Microbiol. 2011 Dec;77(23):8310-7. doi: 10.1128/AEM.06644-11. Epub 2011 Oct 7.

Abstract

Many bacteria spread over surfaces by "swarming" in groups. A problem for scientists who study swarming is the acquisition of statistically significant data that distinguish two observations or detail the temporal patterns and two-dimensional heterogeneities that occur. It is currently difficult to quantify differences between observed swarm phenotypes. Here, we present a method for acquisition of temporal surface motility data using time-lapse fluorescence and bioluminescence imaging. We specifically demonstrate three applications of our technique with the bacterium Pseudomonas aeruginosa. First, we quantify the temporal distribution of P. aeruginosa cells tagged with green fluorescent protein (GFP) and the surfactant rhamnolipid stained with the lipid dye Nile red. Second, we distinguish swarming of P. aeruginosa and Salmonella enterica serovar Typhimurium in a coswarming experiment. Lastly, we quantify differences in swarming and rhamnolipid production of several P. aeruginosa strains. While the best swarming strains produced the most rhamnolipid on surfaces, planktonic culture rhamnolipid production did not correlate with surface growth rhamnolipid production.

摘要

许多细菌通过群体“群集”在表面上传播。对于研究群集的科学家来说,存在一个问题,即如何获取具有统计学意义的数据,以区分两种观察结果或详细描述发生的时间模式和二维非均质性。目前,很难量化观察到的群集表型之间的差异。在这里,我们提出了一种使用延时荧光和生物发光成像获取时间表面运动数据的方法。我们特别用铜绿假单胞菌展示了我们技术的三种应用。首先,我们量化了用绿色荧光蛋白(GFP)标记的铜绿假单胞菌细胞和用脂染料尼罗红染色的表面活性剂鼠李糖脂的时间分布。其次,我们在共群集实验中区分了铜绿假单胞菌和肠炎沙门氏菌血清型 Typhimurium 的群集。最后,我们量化了几种铜绿假单胞菌菌株在群集和鼠李糖脂产生方面的差异。虽然最好的群集菌株在表面上产生了最多的鼠李糖脂,但浮游培养物鼠李糖脂的产生与表面生长的鼠李糖脂的产生没有相关性。

相似文献

1
Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production.
Appl Environ Microbiol. 2011 Dec;77(23):8310-7. doi: 10.1128/AEM.06644-11. Epub 2011 Oct 7.
2
Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2014 Nov;80(21):6724-32. doi: 10.1128/AEM.01237-14. Epub 2014 Aug 29.
3
Surface hardness impairment of quorum sensing and swarming for Pseudomonas aeruginosa.
PLoS One. 2011;6(6):e20888. doi: 10.1371/journal.pone.0020888. Epub 2011 Jun 7.
4
Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility.
J Bacteriol. 2013 Dec;195(24):5499-515. doi: 10.1128/JB.00726-13. Epub 2013 Oct 4.
6
Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa.
J Bacteriol. 2005 Nov;187(21):7351-61. doi: 10.1128/JB.187.21.7351-7361.2005.
7
Single Cells Exhibit Differing Behavioral Phases during Early Stages of Pseudomonas aeruginosa Swarming.
J Bacteriol. 2019 Sep 6;201(19). doi: 10.1128/JB.00184-19. Print 2019 Oct 1.
8
A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa.
Mol Microbiol. 2011 Jan;79(1):166-79. doi: 10.1111/j.1365-2958.2010.07436.x. Epub 2010 Nov 2.
9
Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella.
J Bacteriol. 2008 Apr;190(8):2700-8. doi: 10.1128/JB.01620-07. Epub 2007 Dec 7.

引用本文的文献

1
Bacterial biofilm sample preparation for spatial metabolomics.
Analyst. 2025 Jul 8. doi: 10.1039/d5an00466g.
2
Toroidal displacement of by is a unique mechanism to avoid competition for iron.
mBio. 2025 Jul 9;16(7):e0114925. doi: 10.1128/mbio.01149-25. Epub 2025 Jun 11.
3
Use of analytical strategies to understand spatial chemical variation in bacterial surface communities.
J Bacteriol. 2025 Feb 20;207(2):e0040224. doi: 10.1128/jb.00402-24. Epub 2025 Jan 28.
5
Genomics Analysis Reveals the Potential Biocontrol Mechanism of QY43 against .
J Fungi (Basel). 2024 Apr 21;10(4):298. doi: 10.3390/jof10040298.
6
Microbe cultivation guidelines to optimize rhamnolipid applications.
Sci Rep. 2024 Apr 10;14(1):8362. doi: 10.1038/s41598-024-59021-7.
7
Alkyl quinolones mediate heterogeneous colony biofilm architecture that improves community-level survival.
J Bacteriol. 2024 Apr 18;206(4):e0009524. doi: 10.1128/jb.00095-24. Epub 2024 Apr 2.
8
Metabolic and Oxidative Stress Effects on the Spectroelectrochemical Behavior of Single Cells.
Chem Biomed Imaging. 2023 Oct 12;1(7):659-666. doi: 10.1021/cbmi.3c00083. eCollection 2023 Oct 23.
9
Differential Spreading of Rhamnolipid Congeners from .
ACS Appl Bio Mater. 2023 Nov 20;6(11):4914-4921. doi: 10.1021/acsabm.3c00641. Epub 2023 Oct 25.
10
Swarming of : Through the lens of biophysics.
Biophys Rev (Melville). 2023 Sep;4(3):031305. doi: 10.1063/5.0128140. Epub 2023 Sep 28.

本文引用的文献

2
Surface hardness impairment of quorum sensing and swarming for Pseudomonas aeruginosa.
PLoS One. 2011;6(6):e20888. doi: 10.1371/journal.pone.0020888. Epub 2011 Jun 7.
3
Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.
Biophys J. 2011 Apr 6;100(7):1608-16. doi: 10.1016/j.bpj.2011.02.020.
4
Gene expression in Pseudomonas aeruginosa swarming motility.
BMC Genomics. 2010 Oct 20;11:587. doi: 10.1186/1471-2164-11-587.
5
Bacteria use type IV pili to walk upright and detach from surfaces.
Science. 2010 Oct 8;330(6001):197. doi: 10.1126/science.1194238.
6
A field guide to bacterial swarming motility.
Nat Rev Microbiol. 2010 Sep;8(9):634-44. doi: 10.1038/nrmicro2405. Epub 2010 Aug 9.
8
Rhamnolipids: diversity of structures, microbial origins and roles.
Appl Microbiol Biotechnol. 2010 May;86(5):1323-36. doi: 10.1007/s00253-010-2498-2. Epub 2010 Mar 25.
10
Cell density and mobility protect swarming bacteria against antibiotics.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3776-81. doi: 10.1073/pnas.0910934107. Epub 2010 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验