Suppr超能文献

铜绿假单胞菌中鞭毛和菌毛介导的近表面单细胞运动机制。

Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.

机构信息

Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA.

出版信息

Biophys J. 2011 Apr 6;100(7):1608-16. doi: 10.1016/j.bpj.2011.02.020.

Abstract

Bacterial biofilms are structured multicellular communities that are responsible for a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near a surface is crucial for understanding the transition from the planktonic to the biofilm phenotype. By translating microscopy movies into searchable databases of bacterial behavior and developing image-based search engines, we were able to identify fundamental appendage-specific mechanisms for the surface motility of Pseudomonas aeruginosa. Type IV pili mediate two surface motility mechanisms: horizontally oriented crawling, by which the bacterium moves lengthwise with high directional persistence, and vertically oriented walking, by which the bacterium moves with low directional persistence and high instantaneous velocity, allowing it to rapidly explore microenvironments. The flagellum mediates two additional motility mechanisms: near-surface swimming and surface-anchored spinning, which often precedes detachment from a surface. Flagella and pili interact cooperatively in a launch sequence whereby bacteria change orientation from horizontal to vertical and then detach. Vertical orientation facilitates detachment from surfaces and thereby influences biofilm morphology.

摘要

细菌生物膜是一种结构复杂的多细胞群落,它是多种感染的根源。了解浮游细菌如何在靠近表面的地方调整其运动机制对于理解从浮游态到生物膜表型的转变至关重要。通过将显微镜电影转化为可搜索的细菌行为数据库,并开发基于图像的搜索引擎,我们能够识别铜绿假单胞菌表面运动的基本附属物特异性机制。IV 型菌毛介导两种表面运动机制:水平方向的爬行,细菌沿长轴以高方向持续性移动;垂直方向的行走,细菌以低方向持续性和高瞬时速度移动,从而能够快速探索微环境。鞭毛介导另外两种运动机制:近表面游泳和表面固定旋转,这通常是细菌从表面脱离的前奏。鞭毛和菌毛在发射序列中相互合作,细菌在该序列中改变方向,从水平变为垂直,然后脱离。垂直方向有助于从表面脱离,从而影响生物膜形态。

相似文献

1
Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.
Biophys J. 2011 Apr 6;100(7):1608-16. doi: 10.1016/j.bpj.2011.02.020.
2
Bacteria use type IV pili to walk upright and detach from surfaces.
Science. 2010 Oct 8;330(6001):197. doi: 10.1126/science.1194238.
3
Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
Mol Microbiol. 2003 Jun;48(6):1511-24. doi: 10.1046/j.1365-2958.2003.03525.x.
4
High-Speed "4D" Computational Microscopy of Bacterial Surface Motility.
ACS Nano. 2017 Sep 26;11(9):9340-9351. doi: 10.1021/acsnano.7b04738. Epub 2017 Sep 1.
8
Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.
J R Soc Interface. 2016 Feb;13(115):20150966. doi: 10.1098/rsif.2015.0966.
9
Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence.
Curr Opin Microbiol. 2015 Dec;28:78-82. doi: 10.1016/j.mib.2015.07.017. Epub 2015 Oct 23.

引用本文的文献

1
Phenotypic Characterization of and Mutants of 5075: Impacts on Growth, Biofilm Formation, and Tazobactam Response.
Antibiotics (Basel). 2025 Aug 9;14(8):816. doi: 10.3390/antibiotics14080816.
3
Flagellum-driven motility enhances biofilm formation by altering cell orientation.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0082125. doi: 10.1128/aem.00821-25. Epub 2025 Jul 3.
4
Differentiating bacteria by their unique surface interactions.
PLoS One. 2025 Jun 30;20(6):e0327489. doi: 10.1371/journal.pone.0327489. eCollection 2025.
5
Quorum Sensing and Mobility Inhibition of Pathogenic Bacteria by sp. nov.
Molecules. 2025 May 22;30(11):2278. doi: 10.3390/molecules30112278.
6
Flow-induced bending of flagella controls bacterial surface behavior.
bioRxiv. 2025 Jan 8:2025.01.07.631359. doi: 10.1101/2025.01.07.631359.
8
Uncovering bacterial-mammalian cell interactions via single-cell tracking.
BMC Biol. 2024 Nov 11;22(1):256. doi: 10.1186/s12915-024-02056-z.
10
The surface interface and swimming motility influence surface-sensing responses in .
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2411981121. doi: 10.1073/pnas.2411981121. Epub 2024 Sep 16.

本文引用的文献

1
Bacteria use type IV pili to walk upright and detach from surfaces.
Science. 2010 Oct 8;330(6001):197. doi: 10.1126/science.1194238.
2
Collective motion and density fluctuations in bacterial colonies.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13626-30. doi: 10.1073/pnas.1001651107. Epub 2010 Jul 19.
3
Multiple pilus motors cooperate for persistent bacterial movement in two dimensions.
Phys Rev Lett. 2010 Apr 30;104(17):178104. doi: 10.1103/PhysRevLett.104.178104. Epub 2010 Apr 28.
4
Bacterial motility and clustering guided by microcontact printing.
Nano Lett. 2009 Dec;9(12):4553-7. doi: 10.1021/nl903153c.
5
Bacillus subtilis spreads by surfing on waves of surfactant.
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18109-13. doi: 10.1073/pnas.0905890106. Epub 2009 Oct 13.
6
Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion.
J Bacteriol. 2009 Sep;191(18):5758-64. doi: 10.1128/JB.00660-09. Epub 2009 Jul 17.
7
Evolving concepts in biofilm infections.
Cell Microbiol. 2009 Jul;11(7):1034-43. doi: 10.1111/j.1462-5822.2009.01323.x. Epub 2009 Apr 6.
8
Dynamics of type IV pili is controlled by switching between multiple states.
Biophys J. 2009 Feb;96(3):1169-77. doi: 10.1016/j.bpj.2008.10.017.
9
Amplified effect of Brownian motion in bacterial near-surface swimming.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18355-9. doi: 10.1073/pnas.0807305105. Epub 2008 Nov 17.
10
Living on a surface: swarming and biofilm formation.
Trends Microbiol. 2008 Oct;16(10):496-506. doi: 10.1016/j.tim.2008.07.004. Epub 2008 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验