Department of Biomedical Informatics, Vanderbilt University, School of Medicine, Nashville, Tennessee, USA.
J Am Med Inform Assoc. 2012 May-Jun;19(3):368-74. doi: 10.1136/amiajnl-2011-000484. Epub 2011 Oct 8.
To evaluate the performance of a system that extracts medication information and administration-related actions from patient short message service (SMS) messages.
Mobile technologies provide a platform for electronic patient-centered medication management. MyMediHealth (MMH) is a medication management system that includes a medication scheduler, a medication administration record, and a reminder engine that sends text messages to cell phones. The object of this work was to extend MMH to allow two-way interaction using mobile phone-based SMS technology. Unprompted text-message communication with patients using natural language could engage patients in their healthcare, but presents unique natural language processing challenges. The authors developed a new functional component of MMH, the Patient-centered Automated SMS Tagging Engine (PASTE). The PASTE web service uses natural language processing methods, custom lexicons, and existing knowledge sources to extract and tag medication information from patient text messages.
A pilot evaluation of PASTE was completed using 130 medication messages anonymously submitted by 16 volunteers via a website. System output was compared with manually tagged messages.
Verified medication names, medication terms, and action terms reached high F-measures of 91.3%, 94.7%, and 90.4%, respectively. The overall medication name F-measure was 79.8%, and the medication action term F-measure was 90%.
Other studies have demonstrated systems that successfully extract medication information from clinical documents using semantic tagging, regular expression-based approaches, or a combination of both approaches. This evaluation demonstrates the feasibility of extracting medication information from patient-generated medication messages.
评估从患者短消息服务 (SMS) 消息中提取药物信息和管理相关操作的系统性能。
移动技术为电子以患者为中心的药物管理提供了平台。MyMediHealth (MMH) 是一种药物管理系统,包括药物调度程序、药物管理记录和向手机发送短信的提醒引擎。这项工作的目的是扩展 MMH,允许使用基于手机的 SMS 技术进行双向交互。使用自然语言与患者进行无提示的短信通信可以使患者参与他们的医疗保健,但这带来了独特的自然语言处理挑战。作者开发了 MMH 的一个新功能组件,即患者为中心的自动化 SMS 标记引擎 (PASTE)。PASTE 网络服务使用自然语言处理方法、自定义词典和现有知识库从患者短信中提取和标记药物信息。
通过网站匿名提交了 16 名志愿者的 130 条药物信息,对 PASTE 进行了试点评估。系统输出与手动标记的消息进行了比较。
验证后的药物名称、药物术语和操作术语的 F 度量分别达到 91.3%、94.7%和 90.4%。总体药物名称 F 度量为 79.8%,药物操作术语 F 度量为 90%。
其他研究已经证明了使用语义标记、基于正则表达式的方法或这两种方法的组合从临床文档中成功提取药物信息的系统。这项评估证明了从患者生成的药物消息中提取药物信息的可行性。