UPMC Univ. Paris 6, UMR_S 938, CDR St Antoine, F-75012, Paris, France.
J Alzheimers Dis. 2012;28(1):33-48. doi: 10.3233/JAD-2011-110389.
Alzheimer's disease (AD) is a degenerative disease of the central nervous system which causes irreversible damage to neuron structure and function. The main hypothesis concerning the cause of AD is excessive accumulation of amyloid-β peptides (Aβ). There has recently been a surge in studies on neuronal morphological and functional pathologies related to Aβ-induced mitochondrial dysfunctions and morphological alternations. What is the relation between the accumulation of Aβ in mitochondria, decreased production of ATP, and the large number of mitochondria with broken or scarce cristae observed in AD patients' neurons? The problem is complex, as it is now widely recognized that mitochondria function determines mitochondrial inner membrane (IM) morphology and, conversely, that IM morphology can influence mitochondrial functions. In our previous work, we designed an artificial mitochondrial IM, a minimal model system (giant unilamellar vesicle) mimicking the IM. We showed experimentally that modulation of the local pH gradient at the membrane level of cardiolipin-containing vesicles induces dynamic membrane invaginations similar to the mitochondrial cristae. In the present work we show, using our artificial IM, that Aβ renders the membrane unable to support the formation of cristae-like structures when local pH gradient occurs, leading to the failure of this cristae-like morphology. Fluorescent probe studies suggest that the dramatic change of membrane mechanical properties is due to Aβ-induced lipid bilayer dehydration, increased ordering of lipids, loss of membrane fluidity, and possibly to Aβ-induced changes in dynamic friction between the two leaflets of the lipid membrane.
阿尔茨海默病(AD)是一种中枢神经系统退行性疾病,会导致神经元结构和功能的不可逆转损伤。AD 病因的主要假说为淀粉样β肽(Aβ)的过度积累。近期,有关 Aβ诱导的线粒体功能障碍和形态改变与神经元形态和功能病理学的研究大量涌现。那么,Aβ在线粒体中的积累、ATP 生成减少,以及 AD 患者神经元中观察到的大量线粒体嵴断裂或稀少之间存在什么关系呢?这个问题很复杂,因为现在人们广泛认为线粒体功能决定了线粒体内膜(IM)的形态,反之亦然,IM 的形态也可以影响线粒体的功能。在我们之前的工作中,我们设计了一种人工线粒体 IM,这是一个模拟 IM 的最小模型系统(巨大的单层囊泡)。我们通过实验表明,在含有心磷脂的囊泡的膜水平上调节局部 pH 梯度会诱导类似于线粒体嵴的动态膜内陷。在目前的工作中,我们使用人工 IM 表明,当局部 pH 梯度发生时,Aβ会使膜无法支持嵴样结构的形成,从而导致这种嵴样形态的失败。荧光探针研究表明,膜力学性质的剧烈变化是由于 Aβ诱导的双层脂质脱水、脂质有序度增加、膜流动性丧失,以及 Aβ 诱导的双层脂质之间的动态摩擦力变化所致。