Suppr超能文献

大肠杆菌的需氧呼吸链不允许在完全解偶联模式下工作。

Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode.

机构信息

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.

出版信息

Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17320-4. doi: 10.1073/pnas.1108217108. Epub 2011 Oct 10.

Abstract

Escherichia coli is known to couple aerobic respiratory catabolism to ATP synthesis by virtue of the primary generators of the proton motive force-NADH dehydrogenase I, cytochrome bo(3), and cytochrome bd-I. An E. coli mutant deficient in NADH dehydrogenase I, bo(3) and bd-I can, nevertheless, grow aerobically on nonfermentable substrates, although its sole terminal oxidase cytochrome bd-II has been reported to be nonelectrogenic. In the current work, the ability of cytochrome bd-II to generate a proton motive force is reexamined. Absorption and fluorescence spectroscopy and oxygen pulse methods show that in the steady-state, cytochrome bd-II does generate a proton motive force with a H(+)/e(-) ratio of 0.94 ± 0.18. This proton motive force is sufficient to drive ATP synthesis and transport of nutrients. Microsecond time-resolved, single-turnover electrometry shows that the molecular mechanism of generating the proton motive force is identical to that in cytochrome bd-I. The ability to induce cytochrome bd-II biosynthesis allows E. coli to remain energetically competent under a variety of environmental conditions.

摘要

大肠杆菌(Escherichia coli)已知能够通过质子动力势的主要产生器——NADH 脱氢酶 I、细胞色素 bo(3)和细胞色素 bd-I 将需氧呼吸分解代谢与 ATP 合成偶联。尽管大肠杆菌突变体缺乏 NADH 脱氢酶 I、bo(3)和 bd-I,但仍能在非发酵底物上进行需氧生长,尽管据报道其唯一的末端氧化酶细胞色素 bd-II 是非发电的。在当前的工作中,重新检查了细胞色素 bd-II 产生质子动力势的能力。吸收和荧光光谱以及氧脉冲方法表明,在稳态下,细胞色素 bd-II 确实会产生质子动力势,其 H(+)/e(-) 比为 0.94 ± 0.18。该质子动力势足以驱动 ATP 合成和营养物质的运输。微秒时间分辨、单周转电子计量表明,产生质子动力势的分子机制与细胞色素 bd-I 相同。诱导细胞色素 bd-II 生物合成的能力使大肠杆菌能够在各种环境条件下保持能量适应性。

相似文献

1
Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17320-4. doi: 10.1073/pnas.1108217108. Epub 2011 Oct 10.
2
Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
J Bacteriol. 2009 Sep;191(17):5510-7. doi: 10.1128/JB.00562-09. Epub 2009 Jun 19.
3
Oxygen as Acceptor.
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0012-2015.
4
Cytochrome bd confers nitric oxide resistance to Escherichia coli.
Nat Chem Biol. 2009 Feb;5(2):94-6. doi: 10.1038/nchembio.135. Epub 2008 Dec 21.
6
The terminal oxidase cytochrome bd-I confers carbon monoxide resistance to Escherichia coli cells.
J Inorg Biochem. 2023 Oct;247:112341. doi: 10.1016/j.jinorgbio.2023.112341. Epub 2023 Jul 24.
7
Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli.
PLoS One. 2016 May 6;11(5):e0155186. doi: 10.1371/journal.pone.0155186. eCollection 2016.
8
Effects of replacement of low-spin haem b by haem O on Escherichia coli cytochromes bo and bd quinol oxidases.
J Biochem. 2009 May;145(5):599-607. doi: 10.1093/jb/mvp015. Epub 2009 Jan 27.
9
Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate.
Biochim Biophys Acta. 2011 May;1807(5):503-9. doi: 10.1016/j.bbabio.2011.02.007. Epub 2011 Feb 23.
10
Energy supply for active transport in anaerobically grown Escherichia coli.
J Bacteriol. 1978 Dec;136(3):844-53. doi: 10.1128/jb.136.3.844-853.1978.

引用本文的文献

1
On the role of the terminal oxidase cytochrome bd in hyper-resistance of Listeria monocytogenes to the macrodiolide antibiotic tartrolon B.
PLoS Genet. 2025 Aug 26;21(8):e1011803. doi: 10.1371/journal.pgen.1011803. eCollection 2025 Aug.
2
ATP synthesis driven by atmospheric hydrogen concentrations.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2506353122. doi: 10.1073/pnas.2506353122. Epub 2025 Jul 24.
3
Carbon Monoxide and Prokaryotic Energy Metabolism.
Int J Mol Sci. 2025 Mar 20;26(6):2809. doi: 10.3390/ijms26062809.
4
Dioxygen reductase heterogeneity is crucial for robust aerobic growth physiology of .
iScience. 2024 Nov 28;27(12):111498. doi: 10.1016/j.isci.2024.111498. eCollection 2024 Dec 20.
5
The proteome is a terminal electron acceptor.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2404048121. doi: 10.1073/pnas.2404048121. Epub 2025 Jan 3.
6
Community-specific cell death sustains bacterial expansion under phosphorus starvation.
Nat Chem Biol. 2025 Jun;21(6):867-875. doi: 10.1038/s41589-024-01796-x. Epub 2025 Jan 2.
7
The respiratory chain of in urine-like conditions: critical roles of NDH-2 and -terminal oxidases.
Front Microbiol. 2024 Nov 6;15:1479714. doi: 10.3389/fmicb.2024.1479714. eCollection 2024.
10
The Escherichia coli MFS-type transporter genes yhjE, ydiM, and yfcJ are required to produce an active bo3 quinol oxidase.
PLoS One. 2023 Oct 20;18(10):e0293015. doi: 10.1371/journal.pone.0293015. eCollection 2023.

本文引用的文献

3
Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
J Bacteriol. 2009 Sep;191(17):5510-7. doi: 10.1128/JB.00562-09. Epub 2009 Jun 19.
4
Elevated proton leak of the intermediate OH in cytochrome c oxidase.
Biophys J. 2009 Jun 3;96(11):4733-42. doi: 10.1016/j.bpj.2009.03.006.
8
Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement.
J Biol Chem. 2007 Sep 28;282(39):28514-28519. doi: 10.1074/jbc.M705562200. Epub 2007 Aug 9.
9
Mounting of Escherichia coli spheroplasts for AFM imaging.
Ultramicroscopy. 2005 Nov;105(1-4):96-102. doi: 10.1016/j.ultramic.2005.06.023. Epub 2005 Jul 13.
10
Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3657-62. doi: 10.1073/pnas.0405683102. Epub 2005 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验