Suppr超能文献

大肠杆菌中末端氧化酶活性降低的补偿机制:细胞色素bd-II介导的呼吸作用和谷氨酸代谢。

Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism.

作者信息

Shepherd Mark, Sanguinetti Guido, Cook Gregory M, Poole Robert K

机构信息

Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom.

出版信息

J Biol Chem. 2010 Jun 11;285(24):18464-72. doi: 10.1074/jbc.M110.118448. Epub 2010 Apr 14.

Abstract

Escherichia coli possesses cytochrome bo' (CyoABCDE), cytochrome bd-I (CydAB), and cytochrome bd-II (AppBC) quinol oxidases, all of which can catalyze the terminal step in the aerobic respiratory chain, the reduction of oxygen by ubiquinol. Although CydAB has a role in the generation of DeltapH, AppBC has been proposed to alleviate the accumulation of electrons in the quinone pool during respiratory stress via electroneutral ubiquinol oxidation. A cydB mutant strain exhibited lower respiration rates while maintaining a wild type growth rate. Transcriptomic analysis revealed a dramatic up-regulation of AppBC in the cydB strain, accompanied by the induction of genes involved in glutamate/gamma-aminobutyric acid (GABA) antiport, the GABA shunt, the glyoxylate shunt, respiration (including appBC), motility, and osmotic stress. Transcription factor modeling suggests that the underpinning regulation is largely controlled by H-NS, GadX, FlhDC, and AppY. The transcriptional adaptations imply that cydB cells contribute to the proton motive force via consumption of intracellular protons and glutamate/GABA antiport. Indeed, supplementation of culture medium with l-glutamate stimulates growth in a cydB strain. Phenotype analyses of the cydB strain confirm decreased motility and elevated acid resistance and also an elevated cytochrome d spectroscopic signal in cells grown at low pH. We propose a mechanism via which E. coli can compensate for the loss of cytochrome bd-I activity; cytochrome bd-II-mediated quinol oxidation prevents the accumulation of NADH, whereas GABA synthesis/antiport maintains the proton motive force for ATP production.

摘要

大肠杆菌拥有细胞色素bo'(CyoABCDE)、细胞色素bd-I(CydAB)和细胞色素bd-II(AppBC)喹醇氧化酶,所有这些酶都能催化需氧呼吸链的末端步骤,即泛醇将氧气还原。尽管CydAB在ΔpH的产生中起作用,但有人提出AppBC可通过电中性泛醇氧化来缓解呼吸应激期间醌池中的电子积累。cydB突变株的呼吸速率较低,而生长速率保持野生型。转录组分析显示,cydB菌株中AppBC显著上调,同时诱导了参与谷氨酸/γ-氨基丁酸(GABA)反向转运、GABA分流、乙醛酸分流、呼吸(包括appBC)、运动性和渗透应激的基因。转录因子建模表明,其基础调控主要受H-NS、GadX、FlhDC和AppY控制。转录适应性表明,cydB细胞通过消耗细胞内质子和谷氨酸/GABA反向转运对质子动力做出贡献。事实上,在培养基中添加L-谷氨酸可刺激cydB菌株的生长。对cydB菌株的表型分析证实其运动性降低、耐酸性增强,并且在低pH下生长的细胞中细胞色素d光谱信号增强。我们提出了一种机制,通过该机制大肠杆菌可以补偿细胞色素bd-I活性的丧失;细胞色素bd-II介导的喹醇氧化可防止NADH积累,而GABA合成/反向转运可维持用于ATP产生的质子动力。

相似文献

3
Oxygen as Acceptor.
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0012-2015.
5
Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress.
Antonie Van Leeuwenhoek. 2000 Jul;78(1):23-31. doi: 10.1023/a:1002779201379.
9
A role for DNA supercoiling in the regulation of the cytochrome bd oxidase of Escherichia coli.
Microbiology (Reading). 2001 Mar;147(Pt 3):591-598. doi: 10.1099/00221287-147-3-591.

引用本文的文献

1
Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis.
Sci Adv. 2025 Jan 17;11(3):eadq9686. doi: 10.1126/sciadv.adq9686. Epub 2025 Jan 15.
2
The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology.
PLoS Genet. 2023 Mar 17;19(3):e1010672. doi: 10.1371/journal.pgen.1010672. eCollection 2023 Mar.
3
Intracellular acidification is a hallmark of thymineless death in E. coli.
PLoS Genet. 2022 Oct 24;18(10):e1010456. doi: 10.1371/journal.pgen.1010456. eCollection 2022 Oct.
4
Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images.
Front Microbiol. 2022 Mar 15;13:839718. doi: 10.3389/fmicb.2022.839718. eCollection 2022.
6
Mechanistic and structural diversity between cytochrome isoforms of .
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2114013118.
7
Development of Resistance in ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox.
Antibiotics (Basel). 2020 Nov 10;9(11):791. doi: 10.3390/antibiotics9110791.
8
Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition.
Clin Microbiol Rev. 2019 Oct 16;33(1). doi: 10.1128/CMR.00101-19. Print 2019 Dec 18.
9
The gene codes for an inner membrane protein involved in GABA export in .
AIMS Microbiol. 2017 Feb 17;3(1):71-87. doi: 10.3934/microbiol.2017.1.71. eCollection 2017.

本文引用的文献

1
Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
J Bacteriol. 2009 Sep;191(17):5510-7. doi: 10.1128/JB.00562-09. Epub 2009 Jun 19.
2
Cytochrome bd confers nitric oxide resistance to Escherichia coli.
Nat Chem Biol. 2009 Feb;5(2):94-6. doi: 10.1038/nchembio.135. Epub 2008 Dec 21.
3
Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators.
J Biol Chem. 2009 Feb 13;284(7):4516-24. doi: 10.1074/jbc.M808210200. Epub 2008 Dec 17.
4
Control of RpoS in global gene expression of Escherichia coli in minimal media.
Mol Genet Genomics. 2009 Jan;281(1):19-33. doi: 10.1007/s00438-008-0389-3. Epub 2008 Oct 9.
6
Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses.
J Bacteriol. 2008 May;190(10):3712-20. doi: 10.1128/JB.01990-07. Epub 2008 Mar 21.
7
Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin.
J Biol Chem. 2008 Apr 25;283(17):11146-54. doi: 10.1074/jbc.M708019200. Epub 2008 Feb 18.
8
Crystal structure of the NADH:quinone oxidoreductase WrbA from Escherichia coli.
J Bacteriol. 2007 Dec;189(24):9101-7. doi: 10.1128/JB.01336-07. Epub 2007 Oct 19.
9
Involvement of multiple transcription factors for metal-induced spy gene expression in Escherichia coli.
J Biotechnol. 2008 Jan 20;133(2):196-200. doi: 10.1016/j.jbiotec.2007.08.002. Epub 2007 Aug 6.
10
Repression by binding of H-NS within the transcription unit.
J Biol Chem. 2007 Aug 10;282(32):23622-30. doi: 10.1074/jbc.M702753200. Epub 2007 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验