Shepherd Mark, Sanguinetti Guido, Cook Gregory M, Poole Robert K
Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom.
J Biol Chem. 2010 Jun 11;285(24):18464-72. doi: 10.1074/jbc.M110.118448. Epub 2010 Apr 14.
Escherichia coli possesses cytochrome bo' (CyoABCDE), cytochrome bd-I (CydAB), and cytochrome bd-II (AppBC) quinol oxidases, all of which can catalyze the terminal step in the aerobic respiratory chain, the reduction of oxygen by ubiquinol. Although CydAB has a role in the generation of DeltapH, AppBC has been proposed to alleviate the accumulation of electrons in the quinone pool during respiratory stress via electroneutral ubiquinol oxidation. A cydB mutant strain exhibited lower respiration rates while maintaining a wild type growth rate. Transcriptomic analysis revealed a dramatic up-regulation of AppBC in the cydB strain, accompanied by the induction of genes involved in glutamate/gamma-aminobutyric acid (GABA) antiport, the GABA shunt, the glyoxylate shunt, respiration (including appBC), motility, and osmotic stress. Transcription factor modeling suggests that the underpinning regulation is largely controlled by H-NS, GadX, FlhDC, and AppY. The transcriptional adaptations imply that cydB cells contribute to the proton motive force via consumption of intracellular protons and glutamate/GABA antiport. Indeed, supplementation of culture medium with l-glutamate stimulates growth in a cydB strain. Phenotype analyses of the cydB strain confirm decreased motility and elevated acid resistance and also an elevated cytochrome d spectroscopic signal in cells grown at low pH. We propose a mechanism via which E. coli can compensate for the loss of cytochrome bd-I activity; cytochrome bd-II-mediated quinol oxidation prevents the accumulation of NADH, whereas GABA synthesis/antiport maintains the proton motive force for ATP production.
大肠杆菌拥有细胞色素bo'(CyoABCDE)、细胞色素bd-I(CydAB)和细胞色素bd-II(AppBC)喹醇氧化酶,所有这些酶都能催化需氧呼吸链的末端步骤,即泛醇将氧气还原。尽管CydAB在ΔpH的产生中起作用,但有人提出AppBC可通过电中性泛醇氧化来缓解呼吸应激期间醌池中的电子积累。cydB突变株的呼吸速率较低,而生长速率保持野生型。转录组分析显示,cydB菌株中AppBC显著上调,同时诱导了参与谷氨酸/γ-氨基丁酸(GABA)反向转运、GABA分流、乙醛酸分流、呼吸(包括appBC)、运动性和渗透应激的基因。转录因子建模表明,其基础调控主要受H-NS、GadX、FlhDC和AppY控制。转录适应性表明,cydB细胞通过消耗细胞内质子和谷氨酸/GABA反向转运对质子动力做出贡献。事实上,在培养基中添加L-谷氨酸可刺激cydB菌株的生长。对cydB菌株的表型分析证实其运动性降低、耐酸性增强,并且在低pH下生长的细胞中细胞色素d光谱信号增强。我们提出了一种机制,通过该机制大肠杆菌可以补偿细胞色素bd-I活性的丧失;细胞色素bd-II介导的喹醇氧化可防止NADH积累,而GABA合成/反向转运可维持用于ATP产生的质子动力。