Suppr超能文献

基因簇特征向量:通过基于邻近度的基因簇分组来推断具有功能相关性的基因集的方法。

Gene Cluster Profile Vectors: a method to infer functionally related gene sets by grouping proximity-based gene clusters.

机构信息

School of Informatics and Computing, Indiana University, 150 S Woodlawn Ave, Bloomington, IN 47405, USA.

出版信息

BMC Genomics. 2011;12 Suppl 2(Suppl 2):S2. doi: 10.1186/1471-2164-12-S2-S2. Epub 2011 Jul 27.

Abstract

BACKGROUND

Proximity-based methods and co-evolution-based phylogenetic profiles methods have been successfully used for the identification of functionally related genes. Proximity-based methods are effective for physically clustered genes while the phylogenetic profiles method is effective for co-occurring gene sets. However, both methods predict many false positives and false negatives. In this paper, we propose the Gene Cluster Profile Vector (GCPV) method, which combines these two methods by using phylogenetic profiles of whole gene clusters. The GCPV method is, currently, the only genome comparison based method that allows for the characterization of relationships between gene clusters based profiles of individual genes in clusters.

RESULTS

The GCPV method groups together reasonably related operons in E. coli about 60% of the time. The method is not sensitive to the choice of a reference genome set used and it outperforms the conventional phylogenetic profiles method. Finally, we show that the method works well for predicted gene clusters from C. crescentus and can serve as an important tool not only for understanding gene function, but also for elucidating mechanisms of general biological processes.

CONCLUSIONS

The GCPV method has shown to be an effective and robust approach to the prediction of functionally related gene sets from proximity-based gene clusters or operons.

摘要

背景

基于邻近度的方法和基于共同进化的系统发育分布方法已成功用于鉴定功能相关基因。基于邻近度的方法对于物理聚类基因是有效的,而系统发育分布方法对于共现基因集是有效的。然而,这两种方法都预测了许多假阳性和假阴性。在本文中,我们提出了基因簇分布向量(GCPV)方法,该方法通过使用整个基因簇的系统发育分布来结合这两种方法。GCPV 方法是目前唯一一种基于基因组比较的方法,允许根据基因簇中单个基因的分布特征来描述基因簇之间的关系。

结果

GCPV 方法可以将大肠杆菌中合理相关的操纵子分组在一起,成功率约为 60%。该方法对参考基因组集的选择不敏感,并且优于传统的系统发育分布方法。最后,我们表明该方法适用于新月柄杆菌的预测基因簇,不仅可以作为理解基因功能的重要工具,也可以作为阐明一般生物学过程机制的重要工具。

结论

GCPV 方法已被证明是一种有效的、稳健的方法,可以从基于邻近度的基因簇或操纵子中预测功能相关的基因集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad2/3194233/c40c979fef94/1471-2164-12-S2-S2-1.jpg

相似文献

1
Gene Cluster Profile Vectors: a method to infer functionally related gene sets by grouping proximity-based gene clusters.
BMC Genomics. 2011;12 Suppl 2(Suppl 2):S2. doi: 10.1186/1471-2164-12-S2-S2. Epub 2011 Jul 27.
2
Genomic functional annotation using co-evolution profiles of gene clusters.
Genome Biol. 2002 Oct 10;3(11):RESEARCH0060. doi: 10.1186/gb-2002-3-11-research0060.
3
Gene teams with relaxed proximity constraint.
Proc IEEE Comput Syst Bioinform Conf. 2005:44-55. doi: 10.1109/csb.2005.33.
4
An improved method for identifying functionally linked proteins using phylogenetic profiles.
BMC Bioinformatics. 2007 May 22;8 Suppl 4(Suppl 4):S7. doi: 10.1186/1471-2105-8-S4-S7.
5
Inferring modules of functionally interacting proteins using the Bond Energy Algorithm.
BMC Bioinformatics. 2008 Jun 17;9:285. doi: 10.1186/1471-2105-9-285.
8
A hybrid gene team model and its application to genome analysis.
J Bioinform Comput Biol. 2006 Apr;4(2):171-96. doi: 10.1142/s0219720006001850.
9
The statistical analysis of spatially clustered genes under the maximum gap criterion.
J Comput Biol. 2005 Oct;12(8):1083-102. doi: 10.1089/cmb.2005.12.1083.
10
A global gene evolution analysis on Vibrionaceae family using phylogenetic profile.
BMC Bioinformatics. 2007 Mar 8;8 Suppl 1(Suppl 1):S23. doi: 10.1186/1471-2105-8-S1-S23.

引用本文的文献

1
Tracing evolutionary footprints to identify novel gene functional linkages.
PLoS One. 2013 Jun 25;8(6):e66817. doi: 10.1371/journal.pone.0066817. Print 2013.

本文引用的文献

1
Large-scale analysis of gene clustering in bacteria.
Genome Res. 2008 Jun;18(6):949-56. doi: 10.1101/gr.072322.107. Epub 2008 Apr 4.
3
Phydbac "Gene Function Predictor": a gene annotation tool based on genomic context analysis.
BMC Bioinformatics. 2005 Oct 12;6:247. doi: 10.1186/1471-2105-6-247.
4
The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes.
Nucleic Acids Res. 2005 Oct 7;33(17):5691-702. doi: 10.1093/nar/gki866. Print 2005.
5
APE: Analyses of Phylogenetics and Evolution in R language.
Bioinformatics. 2004 Jan 22;20(2):289-90. doi: 10.1093/bioinformatics/btg412.
6
Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages.
Nat Biotechnol. 2003 Sep;21(9):1055-62. doi: 10.1038/nbt861. Epub 2003 Aug 17.
7
Fast identification and statistical evaluation of segmental homologies in comparative maps.
Bioinformatics. 2003;19 Suppl 1:i74-80. doi: 10.1093/bioinformatics/btg1008.
8
Genomic functional annotation using co-evolution profiles of gene clusters.
Genome Biol. 2002 Oct 10;3(11):RESEARCH0060. doi: 10.1186/gb-2002-3-11-research0060.
9
Automatic detection of conserved gene clusters in multiple genomes by graph comparison and P-quasi grouping.
Nucleic Acids Res. 2000 Oct 15;28(20):4029-36. doi: 10.1093/nar/28.20.4029.
10
KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. doi: 10.1093/nar/28.1.27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验