Suppr超能文献

人类转录因子激活果蝇中与先天性心脏病相关的人类增强子。

Transactivation in Drosophila of human enhancers by human transcription factors involved in congenital heart diseases.

机构信息

Dulbecco Telethon Institute, Department of Biology and Evolution, University of Ferrara, Ferrara, Italy.

出版信息

Dev Dyn. 2012 Jan;241(1):190-9. doi: 10.1002/dvdy.22763. Epub 2011 Oct 11.

Abstract

BACKGROUND

The human transcription factors (TFs) GATA4, NKX2.5 and TBX5 form part of the core network necessary to build a human heart and are involved in Congenital Heart Diseases (CHDs). The human natriuretic peptide precursor A (NPPA) and α-myosin heavy chain 6 (MYH6) genes are downstream effectors involved in cardiogenesis that have been demonstrated to be in vitro targets of such TFs.

RESULTS

To study the interactions between these human TFs and their target enhancers in vivo, we overexpressed them in the whole Drosophila cardiac tube using the UAS/GAL4 system. We observed that all three TFs up-regulate their natural target enhancers in Drosophila and cause developmental defects when overexpressed in eyes and wings.

CONCLUSIONS

A strong potential of the present model might be the development of combinatorial and mutational assays to study the interactions between human TFs and their natural target promoters, which are not easily undertaken in tissue culture cells because of the variability in transfection efficiency, especially when multiple constructs are used. Thus, this novel system could be used to determine in vivo the genetic nature of the human mutant forms of these TFs, setting up a powerful tool to unravel the molecular genetic mechanisms that lead to CHDs.

摘要

背景

人类转录因子(TFs)GATA4、NKX2.5 和 TBX5 构成构建人类心脏所需的核心网络的一部分,它们与先天性心脏病(CHD)有关。人类利钠肽前体 A(NPPA)和α-肌球蛋白重链 6(MYH6)基因是参与心脏发生的下游效应物,已证明它们是这些 TFs 的体外靶标。

结果

为了研究这些人类 TFs 与其靶增强子在体内的相互作用,我们使用 UAS/GAL4 系统在整个果蝇心脏管中过表达它们。我们观察到,这三种 TF 都在果蝇中上调了它们的天然靶增强子,并在眼睛和翅膀中过表达时导致发育缺陷。

结论

该模型的一个强大潜力可能是开发组合和突变测定,以研究人类 TFs 与其天然靶启动子之间的相互作用,由于转染效率的可变性,特别是在使用多个构建体时,在组织培养细胞中进行这些相互作用的研究并不容易。因此,这种新型系统可用于确定这些 TF 的人类突变形式的体内遗传性质,为揭示导致 CHD 的分子遗传机制提供有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/993a/3326377/5cc186c0f600/dvdy0241-0190-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验