Suppr超能文献

果蝇中MeCP2功能的遗传修饰因子

Genetic modifiers of MeCP2 function in Drosophila.

作者信息

Cukier Holly N, Perez Alma M, Collins Ann L, Zhou Zhaolan, Zoghbi Huda Y, Botas Juan

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America.

出版信息

PLoS Genet. 2008 Sep 5;4(9):e1000179. doi: 10.1371/journal.pgen.1000179.

Abstract

The levels of methyl-CpG-binding protein 2 (MeCP2) are critical for normal post-natal development and function of the nervous system. Loss of function of MeCP2, a transcriptional regulator involved in chromatin remodeling, causes classic Rett syndrome (RTT) as well as other related conditions characterized by autism, learning disabilities, or mental retardation. Increased dosage of MeCP2 also leads to clinically similar neurological disorders and mental retardation. To identify molecular mechanisms capable of compensating for altered MeCP2 levels, we generated transgenic Drosophila overexpressing human MeCP2. We find that MeCP2 associates with chromatin and is phosphorylated at serine 423 in Drosophila, as is found in mammals. MeCP2 overexpression leads to anatomical (i.e., disorganized eyes, ectopic wing veins) and behavioral (i.e., motor dysfunction) abnormalities. We used a candidate gene approach to identify genes that are able to compensate for abnormal phenotypes caused by MeCP2 increased activity. These genetic modifiers include other chromatin remodeling genes (Additional sex combs, corto, osa, Sex combs on midleg, and trithorax), the kinase tricornered, the UBE3A target pebble, and Drosophila homologues of the MeCP2 physical interactors Sin3a, REST, and N-CoR. These findings demonstrate that anatomical and behavioral phenotypes caused by MeCP2 activity can be ameliorated by altering other factors that might be more amenable to manipulation than MeCP2 itself.

摘要

甲基-CpG结合蛋白2(MeCP2)的水平对于出生后神经系统的正常发育和功能至关重要。MeCP2作为一种参与染色质重塑的转录调节因子,其功能丧失会导致典型的雷特综合征(RTT)以及其他以自闭症、学习障碍或智力迟钝为特征的相关病症。MeCP2剂量增加也会导致临床上类似的神经疾病和智力迟钝。为了确定能够补偿MeCP2水平改变的分子机制,我们构建了过表达人MeCP2的转基因果蝇。我们发现,与在哺乳动物中一样,MeCP2在果蝇中与染色质结合并在丝氨酸423处被磷酸化。MeCP2过表达会导致解剖学异常(即眼睛结构紊乱、异位翅脉)和行为异常(即运动功能障碍)。我们采用候选基因方法来鉴定能够补偿由MeCP2活性增加引起的异常表型的基因。这些遗传修饰因子包括其他染色质重塑基因(额外性梳、corto、osa、中腿性梳和三体胸)、激酶三角帽、UBE3A靶点卵石以及MeCP2物理相互作用蛋白Sin3a、REST和N-CoR的果蝇同源物。这些发现表明,通过改变其他可能比MeCP2本身更易于操控的因素,可以改善由MeCP2活性引起的解剖学和行为表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc75/2518867/5e5e2dfd34e4/pgen.1000179.g001.jpg

相似文献

1
Genetic modifiers of MeCP2 function in Drosophila.
PLoS Genet. 2008 Sep 5;4(9):e1000179. doi: 10.1371/journal.pgen.1000179.
2
Drosophila as a model for MECP2 gain of function in neurons.
PLoS One. 2012;7(2):e31835. doi: 10.1371/journal.pone.0031835. Epub 2012 Feb 21.
3
MeCP2 dysfunction in Rett syndrome and related disorders.
Curr Opin Genet Dev. 2006 Jun;16(3):276-81. doi: 10.1016/j.gde.2006.04.009. Epub 2006 May 2.
4
Ube3a/E6AP is involved in a subset of MeCP2 functions.
Biochem Biophys Res Commun. 2013 Jul 19;437(1):67-73. doi: 10.1016/j.bbrc.2013.06.036. Epub 2013 Jun 19.
6
9
Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.
Nature. 2015 Dec 3;528(7580):123-6. doi: 10.1038/nature16159. Epub 2015 Nov 25.
10
Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus.
Hum Mol Genet. 2009 Jul 1;18(13):2431-42. doi: 10.1093/hmg/ddp181. Epub 2009 Apr 15.

引用本文的文献

4
Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders.
Int J Mol Sci. 2020 Jul 9;21(14):4859. doi: 10.3390/ijms21144859.
5
Machine Learning Representation of Loss of Eye Regularity in a Neurodegenerative Model.
Front Neurosci. 2020 Jun 4;14:516. doi: 10.3389/fnins.2020.00516. eCollection 2020.
6
Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development.
PLoS Genet. 2020 Jun 24;16(6):e1008792. doi: 10.1371/journal.pgen.1008792. eCollection 2020 Jun.
7
Genetic Modifiers and Rare Mendelian Disease.
Genes (Basel). 2020 Feb 25;11(3):239. doi: 10.3390/genes11030239.
8
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models.
PLoS Genet. 2020 Feb 13;16(2):e1008590. doi: 10.1371/journal.pgen.1008590. eCollection 2020 Feb.
9
silencing by in postural tachycardia syndrome.
JCI Insight. 2017 Mar 23;2(6):e90183. doi: 10.1172/jci.insight.90183.
10
MeCP2-Related Diseases and Animal Models.
Diseases. 2014 Jan 27;2(1):45-70. doi: 10.3390/diseases2010045.

本文引用的文献

1
MeCP2, a key contributor to neurological disease, activates and represses transcription.
Science. 2008 May 30;320(5880):1224-9. doi: 10.1126/science.1153252.
2
Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19416-21. doi: 10.1073/pnas.0707442104. Epub 2007 Nov 27.
3
The story of Rett syndrome: from clinic to neurobiology.
Neuron. 2007 Nov 8;56(3):422-37. doi: 10.1016/j.neuron.2007.10.001.
6
Huntingtin interacting proteins are genetic modifiers of neurodegeneration.
PLoS Genet. 2007 May 11;3(5):e82. doi: 10.1371/journal.pgen.0030082.
7
Polycomb silencing mechanisms and the management of genomic programmes.
Nat Rev Genet. 2007 Jan;8(1):9-22. doi: 10.1038/nrg1981.
8
Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males.
Genet Med. 2006 Dec;8(12):784-92. doi: 10.1097/01.gim.0000250502.28516.3c.
9
Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin.
Mol Cell Biol. 2007 Feb;27(3):864-77. doi: 10.1128/MCB.01593-06. Epub 2006 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验