Department of Microbiology, Montana State University Bozeman, MT, USA.
Front Microbiol. 2011 Aug 22;2:167. doi: 10.3389/fmicb.2011.00167. eCollection 2011.
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
铜绿假单胞菌在许多水相环境中繁殖旺盛,是一种机会性病原体,可以引起急性和慢性感染。环境条件和宿主防御会对细菌造成不同的压力,为了在截然不同的环境中生存,铜绿假单胞菌必须能够适应周围环境。细菌适应的一种策略是用基质材料自我包裹,主要由分泌的细胞外多糖组成。铜绿假单胞菌具有产生至少三种分泌多糖的遗传能力;藻酸盐、Psl 和 Pel。这些多糖在化学结构和生物合成机制上有所不同。由于藻酸盐通常与慢性肺部感染有关,因此其生物合成途径的特征最为明显。然而,藻酸盐仅由一小部分铜绿假单胞菌菌株产生。大多数环境和其他临床分离株分泌 Pel 或 Psl。关于这些多糖的生物合成的信息很少。在这里,我们综述了藻酸盐生物合成途径的文献,重点介绍了最近描述藻酸盐生物合成蛋白结构的发现。这些信息结合对 Psl 和 Pel 操纵子上编码蛋白的结构域架构的表征,使我们能够对这两种多糖的生物合成进行预测性建模。结果表明,藻酸盐和 Pel 具有某些共同特征,包括某些具有结构或功能相似特性的生物合成蛋白。相比之下,Psl 生物合成类似于大肠杆菌的 EPS/CPS 荚膜生物合成途径,其中 Psl 五聚体亚基与异戊二烯脂质载体组装在一起。这些模型以及导致细胞主要产生一种多糖而不是其他多糖的环境线索是当前研究的主题。