Yang Qi, Reisman Charles A, Chan Kinpui, Ramachandran Rithambara, Raza Ali, Hood Donald C
Biomed Opt Express. 2011 Sep 1;2(9):2493-503. doi: 10.1364/BOE.2.002493. Epub 2011 Aug 1.
To provide a tool for quantifying the effects of retinitis pigmentosa (RP) seen on spectral domain optical coherence tomography images, an automated layer segmentation algorithm was developed. This algorithm, based on dual-gradient information and a shortest path search strategy, delineates the inner limiting membrane and three outer retinal boundaries in optical coherence tomography images from RP patients. In addition, an automated inner segment (IS)/outer segment (OS) contour detection method based on the segmentation results is proposed to quantify the locus of points at which the OS thickness goes to zero in a 3D volume scan. The segmentation algorithm and the IS/OS contour were validated with manual segmentation data. The segmentation and IS/OS contour results on repeated measures showed good within-day repeatability, while the results on data acquired on average 22.5 months afterward demonstrated a possible means to follow disease progression. In particular, the automatically generated IS/OS contour provided a possible objective structural marker for RP progression.
为了提供一种量化视网膜色素变性(RP)在光谱域光学相干断层扫描图像上所呈现效果的工具,开发了一种自动层分割算法。该算法基于双梯度信息和最短路径搜索策略,在RP患者的光学相干断层扫描图像中描绘出内界膜和三个视网膜外边界。此外,基于分割结果提出了一种自动内节(IS)/外节(OS)轮廓检测方法,以量化在三维体积扫描中OS厚度变为零的点的轨迹。该分割算法和IS/OS轮廓通过手动分割数据进行了验证。重复测量的分割和IS/OS轮廓结果显示出良好的日内重复性,而平均22.5个月后采集的数据结果表明这是一种跟踪疾病进展的可能方法。特别是,自动生成的IS/OS轮廓为RP进展提供了一种可能的客观结构标志物。