Suppr超能文献

基于深度学习的利用两种光谱域光学相干断层扫描设备对年龄相关性黄斑变性进行视网膜层自动分割算法的验证

Validation of Deep Learning-Based Automatic Retinal Layer Segmentation Algorithms for Age-Related Macular Degeneration with 2 Spectral-Domain OCT Devices.

作者信息

Mukherjee Souvick, De Silva Tharindu, Duic Cameron, Jayakar Gopal, Keenan Tiarnan D L, Thavikulwat Alisa T, Chew Emily, Cukras Catherine

机构信息

Clinical Trials Branch, Division of Epidemiology & Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.

Johnson and Johnson, New Brunswick, New Jersey.

出版信息

Ophthalmol Sci. 2024 Dec 4;5(3):100670. doi: 10.1016/j.xops.2024.100670. eCollection 2025 May-Jun.

Abstract

PURPOSE

Segmentations of retinal layers in spectral-domain OCT (SD-OCT) images serve as a crucial tool for identifying and analyzing the progression of various retinal diseases, encompassing a broad spectrum of abnormalities associated with age-related macular degeneration (AMD). The training of deep learning algorithms necessitates well-defined ground truth labels, validated by experts, to delineate boundaries accurately. However, this resource-intensive process has constrained the widespread application of such algorithms across diverse OCT devices. This work validates deep learning image segmentation models across multiple OCT devices by testing robustness in generating clinically relevant metrics.

DESIGN

Prospective comparative study.

PARTICIPANTS

Adults >50 years of age with no AMD to advanced AMD, as defined in the Age-Related Eye Disease Study, in ≥1 eye, were enrolled. Four hundred two SD-OCT scans were used in this study.

METHODS

We evaluate 2 separate state-of-the-art segmentation algorithms through a training process using images obtained from 1 OCT device (Heidelberg-Spectralis) and subsequent testing using images acquired from 2 OCT devices (Heidelberg-Spectralis and Zeiss-Cirrus). This assessment is performed on a dataset that encompasses a range of retinal pathologies, spanning from disease-free conditions to severe forms of AMD, with a focus on evaluating the device independence of the algorithms.

MAIN OUTCOME MEASURES

Performance metrics (including mean squared error, mean absolute error [MAE], and Dice coefficients) for the segmentations of the internal limiting membrane (ILM), retinal pigment epithelium (RPE), and RPE to Bruch's membrane region, along with en face thickness maps, volumetric estimations (in mm). Violin plots and Bland-Altman plots comparing predictions against ground truth are also presented.

RESULTS

The UNet and DeepLabv3, trained on Spectralis B-scans, demonstrate clinically useful outcomes when applied to Cirrus test B-scans. Review of the Cirrus test data by 2 independent annotators revealed that the aggregated MAE in pixels for ILM was 1.82 ± 0.24 (equivalent to 7.0 ± 0.9 μm) and for RPE was 2.46 ± 0.66 (9.5 ± 2.6 μm). Additionally, the Dice similarity coefficient for the RPE drusen complex region, comparing predictions to ground truth, reached 0.87 ± 0.01.

CONCLUSIONS

In the pursuit of task-specific goals such as retinal layer segmentation, a segmentation network has the capacity to acquire domain-independent features from a large training dataset. This enables the utilization of the network to execute tasks in domains where ground truth is hard to generate.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

光谱域光学相干断层扫描(SD-OCT)图像中的视网膜层分割是识别和分析各种视网膜疾病进展的关键工具,这些疾病包括与年龄相关性黄斑变性(AMD)相关的广泛异常。深度学习算法的训练需要经过专家验证的明确的地面真值标签,以准确描绘边界。然而,这个资源密集型过程限制了此类算法在各种OCT设备中的广泛应用。这项工作通过测试生成临床相关指标的稳健性,验证了跨多个OCT设备的深度学习图像分割模型。

设计

前瞻性比较研究。

参与者

纳入年龄≥50岁、至少一只眼睛患有从无AMD到晚期AMD(如年龄相关性眼病研究中所定义)的成年人。本研究使用了402次SD-OCT扫描。

方法

我们通过使用从1台OCT设备(海德堡光谱仪)获得的图像进行训练过程,并随后使用从2台OCT设备(海德堡光谱仪和蔡司Cirrus)获取的图像进行测试,评估2种独立的先进分割算法。该评估在一个包含一系列视网膜病变的数据集上进行,范围从无疾病状态到严重形式的AMD,重点是评估算法的设备独立性。

主要观察指标

内界膜(ILM)、视网膜色素上皮(RPE)以及RPE到布鲁赫膜区域分割的性能指标(包括均方误差、平均绝对误差[MAE]和骰子系数),以及正面厚度图、体积估计(以毫米为单位)。还展示了将预测结果与地面真值进行比较的小提琴图和布兰德-奥特曼图。

结果

在光谱仪B扫描上训练的UNet和DeepLabv3,应用于Cirrus测试B扫描时显示出临床有用的结果。由2名独立注释者对Cirrus测试数据进行审查发现,ILM以像素为单位的聚合MAE为1.82±0.24(相当于7.0±0.9μm),RPE为2.46±0.66(9.5±2.6μm)。此外,将RPE玻璃膜疣复合体区域的预测结果与地面真值进行比较,骰子相似系数达到0.87±0.01。

结论

在追求视网膜层分割等特定任务目标时,分割网络有能力从大型训练数据集中获取与领域无关的特征。这使得该网络能够在难以生成地面真值的领域中执行任务。

财务披露

在本文末尾的脚注和披露中可能会找到专有或商业披露信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4689/11909428/4a004d5bc6c1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验