Suppr超能文献

从 4D-PET 最大强度投影生成肺部肿瘤内靶区。

Generating lung tumor internal target volumes from 4D-PET maximum intensity projections.

机构信息

Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA.

出版信息

Med Phys. 2011 Oct;38(10):5732-7. doi: 10.1118/1.3633896.

Abstract

PURPOSE

Positron emission tomography (PET) of lung tumors suffers from breathing-motion induced blurring. Respiratory-correlated PET ameliorates motion blurring and enables visualization of lung tumor functional uptake throughout the breathing cycle but has achieved limited clinical use in radiotherapy planning. In this work, the authors propose a process for generating a gated PET maximum intensity projection (MIP), a breathing-phase projection of the 4D image set comprising gated PET images, as a technique to quantitatively and efficiently incorporate respiratory-correlated PET information into radiotherapy treatment planning.

METHODS

4D-CT and respiratory-gated PET using [(18)F]fluorodeoxyglucose (FDG) were acquired of three patients with a total of four small (4-18 cc), clearly defined lower-lobe lung tumors. Internal target volumes (ITVs) for the lung tumors were generated by threshold-based segmentation of PET-MIP images and ungated PET images (ITV(PET-MIP) and ITV(3D-PET), respectively), and by manual contouring of CT-MIP and end-exhale and end-inhale phases of 4D-CT (ITV(CT-MIP)) by a radiation oncologist. Because of the sensitivity of tumor segmentation to threshold value, several different thresholds were tested for ITV generation, including 40%, 30%, and 20% of maximum standardized uptake value (SUV(max)) for FDG as well as absolute SUV thresholds of 2.5 and 3.0. The normalized overlap and relative volumes of ITV(PET-MIP) and ITV(3D-PET) with respect to ITV(CT-MIP) were compared. The images were also visually compared. ITV(CT-MIP) was considered a gold standard for these tumors with CT-visible morphology.

RESULTS

The mean and standard deviation normalized overlap and relative volumes between ITV(PET-MIP) and ITV(CT-MIP) were 0.68 ± 0.07 and 1.07 ± 0.42, respectively, averaged over all four tumors and all five threshold values. The mean and standard deviation normalized overlap and relative volumes of ITV(3D-PET) and ITV(CT-MIP) were 0.47 ± 0.12 and 0.69 ± 0.56, respectively.

CONCLUSIONS

PET-MIP images better match CT-MIP images for this sample of four small CT-visible tumors as compared to ungated PET images, based on the metrics of volumetric overlap and relative volumes as well as visual interpretation. The PET-MIP is a way to incorporate 4D-PET imaging into the process of lung tumor contouring that is time-efficient for the radiation oncologist and involves minimal effort to implement in treatment planning software, because it requires only a single PET image beyond contouring on CT alone.

摘要

目的

肺部肿瘤的正电子发射断层扫描(PET)受到呼吸运动引起的模糊的影响。呼吸相关的 PET 可改善运动模糊,并能够在整个呼吸周期内可视化肺部肿瘤的功能摄取,但在放射治疗计划中仅得到有限的临床应用。在这项工作中,作者提出了一种生成门控 PET 最大强度投影(MIP)的过程,门控 PET 图像集的呼吸相关投影包括门控 PET 图像,作为将呼吸相关 PET 信息定量且有效地纳入放射治疗计划的技术。

方法

对三名共四个小(4-18 cc)、明确界定的下叶肺部肿瘤的患者进行了 4D-CT 和使用 [(18)F] 氟脱氧葡萄糖(FDG)的呼吸门控 PET 采集。通过基于阈值的 PET-MIP 图像和未门控 PET 图像(ITV(PET-MIP) 和 ITV(3D-PET))的分割生成肺部肿瘤的内部靶区(ITV),由放射肿瘤学家对 CT-MIP 和 4D-CT 的呼气末和吸气末进行手动轮廓(ITV(CT-MIP))。由于肿瘤分割对阈值值敏感,因此测试了几种不同的阈值来生成 ITV,包括 FDG 的最大标准化摄取值(SUV(max))的 40%、30%和 20%,以及 2.5 和 3.0 的绝对 SUV 阈值。比较了 ITV(PET-MIP)和 ITV(3D-PET)与 ITV(CT-MIP)的归一化重叠和相对体积。还对图像进行了视觉比较。对于具有 CT 可见形态的这些肿瘤,将 ITV(CT-MIP)视为金标准。

结果

在所有四个肿瘤和所有五个阈值中,平均重叠和相对体积的平均值和标准差 ITV(PET-MIP)和 ITV(CT-MIP)分别为 0.68 ± 0.07 和 1.07 ± 0.42。平均和标准偏差 ITV(3D-PET)和 ITV(CT-MIP)的归一化重叠和相对体积分别为 0.47 ± 0.12 和 0.69 ± 0.56。

结论

与未门控 PET 图像相比,基于体积重叠和相对体积以及视觉解释的度量标准,PET-MIP 图像对于这四个小 CT 可见肿瘤的样本与 CT-MIP 图像更好地匹配。PET-MIP 是将 4D-PET 成像纳入肺部肿瘤轮廓过程的一种方法,对于放射肿瘤学家来说非常高效,并且在治疗计划软件中实施所需的工作量最小,因为它仅需要在 CT 上单独进行轮廓绘制之外的单个 PET 图像。

相似文献

5
Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume.
Int J Radiat Oncol Biol Phys. 2013 Jul 15;86(4):749-54. doi: 10.1016/j.ijrobp.2013.02.030. Epub 2013 Apr 16.
6
Determination of internal target volume from a single positron emission tomography/computed tomography scan in lung cancer.
Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):459-66. doi: 10.1016/j.ijrobp.2011.06.2002. Epub 2011 Dec 22.
7
Motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes.
Radiother Oncol. 2013 Oct;109(1):112-6. doi: 10.1016/j.radonc.2013.07.015. Epub 2013 Sep 14.
10
Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning.
Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):e99-105. doi: 10.1016/j.ijrobp.2010.12.060. Epub 2011 Mar 4.

引用本文的文献

1
4D-CT Attenuation Correction in Respiratory-Gated PET for Hypoxia Imaging: Is It Really Beneficial?
Tomography. 2020 Jun;6(2):241-249. doi: 10.18383/j.tom.2019.00027.
2
Impact of tumour motion compensation and delineation methods on FDG PET-based dose painting plan quality for NSCLC radiation therapy.
J Med Imaging Radiat Oncol. 2018 Feb;62(1):81-90. doi: 10.1111/1754-9485.12693. Epub 2017 Nov 28.
4
Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer.
Mol Imaging Radionucl Ther. 2016 Jun 5;25(2):50-62. doi: 10.4274/mirt.19870.
7
4D PET/CT as a Strategy to Reduce Respiratory Motion Artifacts in FDG-PET/CT.
Front Oncol. 2014 Aug 4;4:205. doi: 10.3389/fonc.2014.00205. eCollection 2014.

本文引用的文献

1
List mode-driven cardiac and respiratory gating in PET.
J Nucl Med. 2009 May;50(5):674-81. doi: 10.2967/jnumed.108.059204. Epub 2009 Apr 16.
5
Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice.
Radiother Oncol. 2007 Jun;83(3):311-5. doi: 10.1016/j.radonc.2007.04.033. Epub 2007 May 14.
9
Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer.
Int J Radiat Oncol Biol Phys. 2005 Sep 1;63(1):253-60. doi: 10.1016/j.ijrobp.2005.05.045.
10
Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion.
Int J Radiat Oncol Biol Phys. 2005 Apr 1;61(5):1535-50. doi: 10.1016/j.ijrobp.2004.11.037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验