Suppr超能文献

通过回顾性叠加减少正电子发射断层扫描中的呼吸运动伪影。

Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking.

作者信息

Thorndyke Brian, Schreibmann Eduard, Koong Albert, Xing Lei

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.

出版信息

Med Phys. 2006 Jul;33(7):2632-41. doi: 10.1118/1.2207367.

Abstract

Respiratory motion artifacts in positron emission tomography (PET) imaging can alter lesion intensity profiles, and result in substantially reduced activity and contrast-to-noise ratios (CNRs). We propose a corrective algorithm, coined "retrospective stacking" (RS), to restore image quality without requiring additional scan time. Retrospective stacking uses b-spline deformable image registration to combine amplitude-binned PET data along the entire respiratory cycle into a single respiratory end point. We applied the method to a phantom model consisting of a small, hot vial oscillating within a warm background, as well as to 18FDG-PET images of a pancreatic and a liver patient. Comparisons were made using cross-section visualizations, activity profiles, and CNRs within the region of interest. Retrospective stacking was found to properly restore the lesion location and intensity profile in all cases. In addition, RS provided CNR improvements up to three-fold over gated images, and up to five-fold over ungated data. These phantom and patient studies demonstrate that RS can correct for lesion motion and deformation, while substantially improving tumor visibility and background noise.

摘要

正电子发射断层扫描(PET)成像中的呼吸运动伪影会改变病变强度分布,并导致活性和对比度噪声比(CNR)大幅降低。我们提出了一种名为“回顾性叠加”(RS)的校正算法,无需额外的扫描时间即可恢复图像质量。回顾性叠加使用B样条可变形图像配准,将整个呼吸周期内按幅度分类的PET数据组合成一个单一的呼吸终点。我们将该方法应用于一个体模模型,该模型由一个在温暖背景中振荡的小热瓶组成,以及一名胰腺和一名肝脏患者的18FDG-PET图像。使用横截面可视化、活性分布以及感兴趣区域内对比度噪声比进行比较。结果发现,回顾性叠加在所有情况下都能正确恢复病变位置和强度分布。此外,与门控图像相比,RS可将CNR提高三倍,与非门控数据相比可提高五倍。这些体模和患者研究表明,RS可以校正病变运动和变形,同时显著提高肿瘤可见度和背景噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验