Suppr超能文献

评估关系中的健康诊断披露决策:检验披露决策模型。

Assessing health diagnosis disclosure decisions in relationships: testing the disclosure decision-making model.

机构信息

Department of Communication, Rutgers University, NJ, USA.

出版信息

Health Commun. 2012;27(4):356-68. doi: 10.1080/10410236.2011.586988. Epub 2011 Oct 12.

Abstract

Illness affects millions of Americans each year, and the disclosure of health conditions can facilitate access to social support, in addition to other physical and physiological benefits. This article tests the Disclosure Decision-Making Model (DD-MM; Greene, 2009 ) to predict factors that influence the likelihood of disclosing (and past disclosure of) nonvisible physical or mental health-related information. One hundred eighty-seven (n = 187) people were recruited for a study to report on both disclosing and not disclosing a nonvisible health condition. Measured variables included information assessment, relational quality, anticipated reactions (support, relational consequences), confidence in response, disclosure efficacy, and disclosure (likelihood of disclosure and depth of disclosure). Structural equation modeling results supported many of the proposed hypotheses, with a great deal of similarity across models. Specifically, assessing information predicted efficacy, and to some extent relational outcomes. Closeness was related to response overall and to efficacy in one model. Response predicted outcome overall and likelihood of disclosure in one model. Finally, efficacy predicted likelihood of disclosure and depth of disclosure. The article discusses the implications of the findings for understanding information, relationship assessments, and efficacy in disclosing health diagnoses.

摘要

疾病每年影响着数以百万计的美国人,披露健康状况除了能带来其他身体和生理上的好处外,还能帮助他们获得社会支持。本文通过测试披露决策模型(DD-MM;Greene,2009)来预测影响披露(和过去披露)非可见的身体或心理健康相关信息的可能性的因素。有 187 人(n=187)参与了一项研究,报告他们是否披露了一种非可见的健康状况。测量变量包括信息评估、关系质量、预期反应(支持、关系后果)、回应信心、披露效果以及披露(披露的可能性和披露的深度)。结构方程模型的结果支持了许多假设,模型之间有很大的相似性。具体来说,信息评估预测了效果,在某种程度上还预测了关系结果。亲密关系与整体反应以及一个模型中的效果有关。反应总体上预测了结果,一个模型中还预测了披露的可能性。最后,效果预测了披露的可能性和披露的深度。本文讨论了这些发现对理解信息、关系评估和披露健康诊断的效果的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验