Suppr超能文献

利用定量非均匀采样 NMR 光谱学增强蛋白质动力学研究。

Boosting protein dynamics studies using quantitative nonuniform sampling NMR spectroscopy.

机构信息

Institute for Protein Research, Osaka University, Osaka, Japan.

出版信息

J Phys Chem B. 2011 Nov 24;115(46):13740-5. doi: 10.1021/jp2081116. Epub 2011 Nov 1.

Abstract

NMR spectroscopy is uniquely suited to study protein dynamics over a wide range of time scales at atomic resolution. However, existing NMR relaxation methods require highly serial, lengthy data collection, ultimately limiting their application to short-lived samples, such as proteins in living cells. In recent years, the utility of nonuniform sampling (NUS) NMR methodologies has been increasingly recognized, but their application has been rare in relaxation measurements where highly accurate spectral quantification is demanded. Recently, Matsuki et al. developed a new NUS-processing method, SIFT (Spectroscopy by Integration of Frequency and Time domain information), which is highly robust and faithful in reproducing signals. In this work, we demonstrate the gains that are possible with more aggressive use of frequency domain information than was employed previously. This improvement is crucial for SIFT to be used in accelerating relaxation measurements while preserving full analytical accuracy. By taking the KIX domain of mouse CREB-binding protein (CBP) as an example, we demonstrate that this quantitative NUS processing method enables total 10-fold expedition of the R(2) relaxation dispersion measurements. The advanced SIFT processing should be equally useful for other NMR relaxation measurements.

摘要

NMR 光谱学非常适合在原子分辨率下研究广泛时间尺度的蛋白质动力学。然而,现有的 NMR 弛豫方法需要高度串行、冗长的数据采集,最终限制了它们在短寿命样品中的应用,例如活细胞中的蛋白质。近年来,非均匀采样 (NUS) NMR 方法的实用性越来越受到认可,但在需要高度精确光谱定量的弛豫测量中,它们的应用很少。最近,松基等人开发了一种新的 NUS 处理方法,SIFT(基于频率和时域信息集成的光谱学),该方法在重现信号方面具有高度的稳健性和忠实性。在这项工作中,我们展示了比以前更积极地利用频域信息所带来的收益。这种改进对于 SIFT 在保持完全分析准确性的同时加速弛豫测量至关重要。通过以小鼠 CREB 结合蛋白 (CBP) 的 KIX 结构域为例,我们证明了这种定量 NUS 处理方法可以使 R(2) 弛豫分散测量的速度提高 10 倍。这种先进的 SIFT 处理对于其他 NMR 弛豫测量也同样有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验