Suppr超能文献

使用迭代映射达到二维 NMR 谱中单峰重构的稀疏采样极限。

Reaching the sparse-sampling limit for reconstructing a single peak in a 2D NMR spectrum using iterated maps.

机构信息

Department of Physics, Yale University, 217 Prospect St., New Haven, CT, 06511, USA.

Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06511, USA.

出版信息

J Biomol NMR. 2019 Nov;73(10-11):545-560. doi: 10.1007/s10858-019-00262-4. Epub 2019 Jul 10.

Abstract

Many of the ubiquitous experiments of biomolecular NMR, including [Formula: see text], [Formula: see text], and CEST, involve acquiring repeated 2D spectra under slightly different conditions. Such experiments are amenable to acceleration using non-uniform sampling spectral reconstruction methods that take advantage of prior information. We previously developed one such technique, an iterated maps method (DiffMap) that we successfully applied to 2D NMR spectra, including [Formula: see text] relaxation dispersion data. In that prior work, we took a top-down approach to reconstructing the 2D spectrum with a minimal number of sparse samples, reaching an undersampling fraction that appeared to leave some room for improvement. In this study, we develop an in-depth understanding of the action of the DiffMap algorithm, identifying the factors that cause reconstruction errors for different undersampling fractions. This improved understanding allows us to formulate a bottom-up approach to finding the lowest number of sparse samples required to accurately reconstruct individual spectral features with DiffMap. We also discuss the difficulty of extending this method to reconstructing many peaks at once, and suggest a way forward.

摘要

许多生物分子 NMR 的常见实验,包括 [Formula: see text]、[Formula: see text] 和 CEST,都涉及在略有不同的条件下获取重复的 2D 谱。此类实验可以使用利用先验信息的非均匀采样谱重建方法进行加速。我们之前开发了一种这样的技术,一种迭代映射方法(DiffMap),我们成功地将其应用于 2D NMR 谱,包括 [Formula: see text] 弛豫色散数据。在之前的工作中,我们采用自上而下的方法,用最少的稀疏样本来重建 2D 谱,达到的欠采样分数似乎还有改进的空间。在这项研究中,我们深入了解了 DiffMap 算法的作用,确定了不同欠采样分数导致重建误差的因素。这种更好的理解使我们能够制定一种自下而上的方法,找到使用 DiffMap 准确重建单个光谱特征所需的最少稀疏样本数。我们还讨论了将这种方法扩展到同时重建多个峰的困难,并提出了一种前进的方法。

相似文献

2
Accelerating 2D NMR relaxation dispersion experiments using iterated maps.利用迭代映射加速 2D NMR 弛豫弥散实验。
J Biomol NMR. 2019 Nov;73(10-11):561-576. doi: 10.1007/s10858-019-00263-3. Epub 2019 Jul 6.
3
Nonuniform Sampling for NMR Spectroscopy.核磁共振波谱学的非均匀采样
Methods Enzymol. 2019;614:263-291. doi: 10.1016/bs.mie.2018.09.009. Epub 2018 Oct 26.
4
Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.使用深度神经网络重建非均匀采样的 NMR 光谱。
J Biomol NMR. 2019 Nov;73(10-11):577-585. doi: 10.1007/s10858-019-00265-1. Epub 2019 Jul 10.
5
Accelerating multidimensional NMR and MRI experiments using iterated maps.利用迭代图加速多维 NMR 和 MRI 实验。
J Magn Reson. 2013 Dec;237:100-109. doi: 10.1016/j.jmr.2013.09.005. Epub 2013 Sep 21.

本文引用的文献

1
Accelerating 2D NMR relaxation dispersion experiments using iterated maps.利用迭代映射加速 2D NMR 弛豫弥散实验。
J Biomol NMR. 2019 Nov;73(10-11):561-576. doi: 10.1007/s10858-019-00263-3. Epub 2019 Jul 6.
4
Non-uniform sampling in biomolecular NMR.生物分子核磁共振中的非均匀采样
J Biomol NMR. 2017 Jun;68(2):65-66. doi: 10.1007/s10858-017-0116-7. Epub 2017 Jun 15.
5
NMRbox: A Resource for Biomolecular NMR Computation.NMRbox:生物分子核磁共振计算资源
Biophys J. 2017 Apr 25;112(8):1529-1534. doi: 10.1016/j.bpj.2017.03.011.
8
9
Non-uniform sampling of NMR relaxation data.核磁共振弛豫数据的非均匀采样。
J Biomol NMR. 2016 Feb;64(2):165-73. doi: 10.1007/s10858-016-0020-6. Epub 2016 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验