Suppr超能文献

在酿酒酵母中直接筛选钾离子转运增加的突变体。

Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae.

作者信息

Vidal M, Buckley A M, Hilger F, Gaber R F

机构信息

Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208.

出版信息

Genetics. 1990 Jun;125(2):313-20. doi: 10.1093/genetics/125.2.313.

Abstract

Saccharomyces cerevisiae cells containing a deletion of TRK1, the gene encoding the high affinity potassium transporter, retain only low affinity uptake of this ion and consequently lose the ability to grow in media containing low levels (0.2 mM) of potassium. Using a trk1 delta strain, we selected spontaneous Trk+ pseudorevertants that regained the ability to grow on low concentrations of potassium. The revertants define three unlinked extragenic suppressors of trk1 delta. Dominant RPD2 mutations and recessive rpd1 and rpd3 mutations confer increased potassium uptake in trk1 delta cells. Genetic evidence suggests that RPD2 mutations are alleles of TRK2, the putative low affinity transporter gene, whereas rpd1 and rpd3 mutations increase TRK2 activity: (1) RPD2 mutations are closely linked to trk2, and (2) trk2 mutations are epistatic to both rpd1 and rpd3. rpd1 maps near pho80 on chromosome XV and rpd3 maps on the left arm of chromosome XIV, closely linked to kre1.

摘要

酿酒酵母细胞中编码高亲和力钾转运体的基因TRK1缺失后,对该离子仅保留低亲和力摄取,因此失去在含低水平(0.2 mM)钾的培养基中生长的能力。利用trk1Δ菌株,我们筛选出了能在低钾浓度下恢复生长能力的自发Trk +假回复体。这些回复体确定了trk1Δ的三个不连锁的基因外抑制子。显性RPD2突变以及隐性rpd1和rpd3突变使trk1Δ细胞的钾摄取增加。遗传学证据表明,RPD2突变是假定的低亲和力转运体基因TRK2的等位基因,而rpd1和rpd3突变增加了TRK2的活性:(1)RPD2突变与trk2紧密连锁,(2)trk2突变对rpd1和rpd3均呈上位性。rpd1定位于第十五号染色体上靠近pho80的位置,rpd3定位于第十四号染色体的左臂上,与kre1紧密连锁。

相似文献

1
Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae.
Genetics. 1990 Jun;125(2):313-20. doi: 10.1093/genetics/125.2.313.
2
TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae.
Genetics. 1990 Jun;125(2):305-12. doi: 10.1093/genetics/125.2.305.
3
TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae.
J Bacteriol. 1994 Jan;176(1):249-52. doi: 10.1128/jb.176.1.249-252.1994.
5
TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae.
Mol Cell Biol. 1991 Aug;11(8):4266-73. doi: 10.1128/mcb.11.8.4266-4273.1991.
6
Trk1 and Trk2 define the major K(+) transport system in fission yeast.
J Bacteriol. 2000 Jan;182(2):394-9. doi: 10.1128/JB.182.2.394-399.2000.
8
Potassium transport by amino acid permeases in Saccharomyces cerevisiae.
J Biol Chem. 1997 May 23;272(21):13647-52. doi: 10.1074/jbc.272.21.13647.

引用本文的文献

1
The Rpd3-Complex Regulates Expression of Multiple Cell Surface Recycling Factors in Yeast.
Int J Mol Sci. 2021 Nov 19;22(22):12477. doi: 10.3390/ijms222212477.
3
On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi.
Biotechnol Adv. 2019 Nov 1;37(6):107345. doi: 10.1016/j.biotechadv.2019.02.001. Epub 2019 Feb 7.
4
Same agent, different messages: insight into transcriptional regulation by SIN3 isoforms.
Epigenetics Chromatin. 2018 Apr 17;11(1):17. doi: 10.1186/s13072-018-0188-y.
6
Chromatin: a capacitor of acetate for integrated regulation of gene expression and cell physiology.
Curr Opin Genet Dev. 2014 Jun;26:53-8. doi: 10.1016/j.gde.2014.06.002. Epub 2014 Jul 10.
7
Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family.
Cell Mol Life Sci. 2010 Aug;67(15):2511-32. doi: 10.1007/s00018-010-0317-7. Epub 2010 Mar 24.
8
Negative and positive regulation of gene expression by mouse histone deacetylase 1.
Mol Cell Biol. 2006 Nov;26(21):7913-28. doi: 10.1128/MCB.01220-06. Epub 2006 Aug 28.
10
Sin3: a flexible regulator of global gene expression and genome stability.
Curr Genet. 2005 Jan;47(1):1-17. doi: 10.1007/s00294-004-0541-5. Epub 2004 Nov 23.

本文引用的文献

1
Biochemical Mutants in the Smut Fungus Ustilago Maydis.
Genetics. 1949 Sep;34(5):607-26. doi: 10.1093/genetics/34.5.607.
2
Genetic modification of potassium channels in Drosophila Shaker mutants.
Nature. 1981;293(5829):228-30. doi: 10.1038/293228a0.
3
Empirical equation that can be used to determine genetic map distances from tetrad data.
Mol Cell Biol. 1983 Oct;3(10):1886-7. doi: 10.1128/mcb.3.10.1886-1887.1983.
4
Modified plasma-membrane ATPase in mutants of Saccharomyces cerevisiae.
Eur J Biochem. 1983 Feb 1;130(2):235-9. doi: 10.1111/j.1432-1033.1983.tb07141.x.
8
Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae.
Mol Cell Biol. 1987 Nov;7(11):4082-8. doi: 10.1128/mcb.7.11.4082-4088.1987.
10
Genetic map of Saccharomyces cerevisiae, edition 10.
Yeast. 1989 Sep-Oct;5(5):321-403. doi: 10.1002/yea.320050503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验