Suppr超能文献

TRK2不是酿酒酵母中的低亲和力钾转运体。

TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae.

作者信息

Ramos J, Alijo R, Haro R, Rodriguez-Navarro A

机构信息

Departamento de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Córdoba, Spain.

出版信息

J Bacteriol. 1994 Jan;176(1):249-52. doi: 10.1128/jb.176.1.249-252.1994.

Abstract

TRK1 and TRK2 encode proteins involved in K+ uptake in Saccharomyces cerevisiae. A kinetic study of Rb+ influx in trk1 TRK2, trk1 TRK2D, and trk1 trk2 mutants reveals that TRK2 shows moderate affinity for Rb+. K(+)-starved trk1 delta TRK2 cells show a low-affinity component accounting for almost the total Vmax of the influx and a moderate-affinity component exhibiting a very low Vmax. Overexpression of TRK2 in trk1 delta TRK2D cells increases the Vmax of the moderate-affinity component, and this component disappears in trk1 delta trk2 delta cells. In contrast, the low-affinity component of Rb+ influx in trk1 delta TRK2 cells is not affected by mutations in TRK2. Consistent with the different levels of activity of the moderate-affinity Rb+ influx, trk1 delta TRK2 cells grow slowly in micromolar K+, trk1 delta TRK2D cells grow rapidly, and trk1 delta trk2 delta cells fail to grow. The existence of a unique K+ uptake system composed of several proteins is also discussed.

摘要

TRK1和TRK2编码参与酿酒酵母钾离子摄取的蛋白质。对trk1 TRK2、trk1 TRK2D和trk1 trk2突变体中铷离子流入的动力学研究表明,TRK2对铷离子具有中等亲和力。钾离子饥饿的trk1δTRK2细胞显示出一个低亲和力组分,几乎占流入总量的Vmax,以及一个中等亲和力组分,其Vmax非常低。在trk1δTRK2D细胞中过表达TRK2会增加中等亲和力组分的Vmax,并且该组分在trk1δtrk2δ细胞中消失。相反,trk1δTRK2细胞中铷离子流入的低亲和力组分不受TRK2突变的影响。与中等亲和力铷离子流入的不同活性水平一致,trk1δTRK2细胞在微摩尔浓度的钾离子中生长缓慢,trk1δTRK2D细胞生长迅速,而trk1δtrk2δ细胞无法生长。还讨论了由几种蛋白质组成的独特钾离子摄取系统的存在。

相似文献

1
TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae.
J Bacteriol. 1994 Jan;176(1):249-52. doi: 10.1128/jb.176.1.249-252.1994.
2
Trk1 and Trk2 define the major K(+) transport system in fission yeast.
J Bacteriol. 2000 Jan;182(2):394-9. doi: 10.1128/JB.182.2.394-399.2000.
3
TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae.
Genetics. 1990 Jun;125(2):305-12. doi: 10.1093/genetics/125.2.305.
4
TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae.
Mol Cell Biol. 1991 Aug;11(8):4266-73. doi: 10.1128/mcb.11.8.4266-4273.1991.
6
Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae.
Genetics. 1990 Jun;125(2):313-20. doi: 10.1093/genetics/125.2.313.
8
Univalent cation fluxes in yeast.
Biochem Mol Biol Int. 1998 Feb;44(2):371-80. doi: 10.1080/15216549800201382.
9
On the role of Trk1 and Trk2 in Schizosaccharomyces pombe under different ion stress conditions.
FEMS Yeast Res. 2004 Mar;4(6):619-24. doi: 10.1016/j.femsyr.2003.11.003.

引用本文的文献

1
Yeast complementation assays provide limited information on functional features of K channels.
Biophys Rep (N Y). 2025 Mar 13;5(2):100206. doi: 10.1016/j.bpr.2025.100206.
2
The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae016.
4
Dimerisation of the Yeast K Translocation Protein Trk1 Depends on the K Concentration.
Int J Mol Sci. 2022 Dec 26;24(1):398. doi: 10.3390/ijms24010398.
8
Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling.
PLoS Comput Biol. 2012;8(6):e1002548. doi: 10.1371/journal.pcbi.1002548. Epub 2012 Jun 21.
9
Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake.
G3 (Bethesda). 2011 Jun;1(1):43-56. doi: 10.1534/g3.111.000166. Epub 2011 Jun 1.

本文引用的文献

1
DISCRIMINATION BETWEEN ALKALI METAL CATIONS BY YEAST. I. EFFECT OF PH ON UPTAKE.
J Gen Physiol. 1964 Sep;48(1):61-71. doi: 10.1085/jgp.48.1.61.
2
A cation carrier in the yeast cell wall.
Biochem J. 1958 Jun;69(2):265-74. doi: 10.1042/bj0690265.
4
Roles of multiple glucose transporters in Saccharomyces cerevisiae.
Mol Cell Biol. 1993 Jan;13(1):638-48. doi: 10.1128/mcb.13.1.638-648.1993.
5
Dual system for potassium transport in Saccharomyces cerevisiae.
J Bacteriol. 1984 Sep;159(3):940-5. doi: 10.1128/jb.159.3.940-945.1984.
6
One-step gene disruption in yeast.
Methods Enzymol. 1983;101:202-11. doi: 10.1016/0076-6879(83)01015-0.
7
Ion transport in yeast.
Biochim Biophys Acta. 1981 Dec;650(2-3):88-127. doi: 10.1016/0304-4157(81)90002-2.
8
Inhibition by sodium and lithium in osmophilic yeasts.
Antonie Van Leeuwenhoek. 1971;37(2):225-31. doi: 10.1007/BF02218485.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验