Suppr超能文献

小动物全身 MicroCT 数据中骨体积和骨厚度的自动测量。

Automated bone volume and thickness measurements in small animal whole-body MicroCT data.

机构信息

Division of Image Processing, Leiden University Medical Center, The Netherlands.

出版信息

Mol Imaging Biol. 2012 Aug;14(4):420-30. doi: 10.1007/s11307-011-0522-2.

Abstract

PURPOSE

Quantification of osteolysis is crucial for monitoring treatment effects in preclinical research and should be based on MicroCT data rather than conventional 2D radiographs to obtain optimal accuracy. However, data assessment is greatly complicated in the case of 3D data. This paper presents an automated method to follow osteolytic lesions quantitatively and visually over time in whole-body MicroCT data of mice.

PROCEDURES

This novel approach is based on a previously published approach to coarsely locate user-defined structures of interest in the data and present them in a standardized manner (Baiker et al., Med Image Anal 14:723-737, 2010; Kok et al., IEEE Trand Vis Comput Graph 16:1396-1404, 2010). Here, we extend this framework by presenting a highly accurate way to automatically measure the volumes of individual bones and demonstrate the technique by following the effect of osteolysis in the tibia of a mouse over time. Besides presenting quantitative results, we also give a visualization of the measured volume to be able to investigate the performance of the method qualitatively. In addition, we describe an approach to measure and visualize cortical bone thickness, which allows assessing local effects of osteolysis and bone remodeling. The presented techniques are fully automated and therefore allow obtaining objective results, which are independent of human observer performance variations. In addition, the time typically required to analyze whole-body data is greatly reduced.

RESULTS

Evaluation of the approaches was performed using MicroCT follow-up datasets of 15 mice (n = 15), with induced bone metastases in the right tibia. All animals were scanned three times: at baseline, after 3 and 7 weeks. For each dataset, our method was used to locate the tibia and measure the bone volume. To assess the performance of the automated method, bone volume measurements were also done by two human experts. A quantitative comparison of the results of the automated method with the human observers showed that there is a high correlation between the observers (r = 0.9996), between the first observer and the presented method (r = 0.9939), and also between the second observer and the presented method (r = 0.9937). In addition, Bland-Altman plots revealed excellent agreement between the observers and the automated method (interobserver bone volume variability, 0.59 ± 0.64%; Obs1 vs. Auto, 0.26 ± 2.53% and Obs2 vs. Auto, -0.33 ± 2.61%). Statistical analysis yielded no significant difference (p = .10) between the manual and the automated bone measurements and thus the method yields optimum results. This could also be confirmed visually, based on the graphical representations of the bone volumes. The performance of the bone thickness measurements was assessed qualitatively.

CONCLUSIONS

We come to the conclusion that the presented method allows to measure and visualize local bone volume and thickness in longitudinal data in an accurate and robust manner, proving that the automated tool is a fast and user friendly alternative to manual analysis.

摘要

目的

在临床前研究中,骨溶解的定量对于监测治疗效果至关重要,并且应该基于 MicroCT 数据,而不是传统的二维射线照片,以获得最佳的准确性。然而,在 3D 数据的情况下,数据评估变得非常复杂。本文提出了一种自动方法,可以在小鼠的全身 MicroCT 数据中随时间定量和可视化地跟踪溶骨性病变。

过程

这种新方法基于以前发表的一种方法,用于粗略地定位数据中用户定义的感兴趣结构,并以标准化的方式呈现它们(Baiker 等人,医学图像分析 14:723-737, 2010;Kok 等人,IEEE Trand Vis Comput Graph 16:1396-1404, 2010)。在这里,我们通过提出一种高度准确的自动测量单个骨骼体积的方法来扩展这个框架,并通过随时间跟踪小鼠胫骨中的溶骨作用来演示该技术。除了呈现定量结果外,我们还提供了测量体积的可视化,以便能够定性地研究该方法的性能。此外,我们还描述了一种测量和可视化皮质骨厚度的方法,该方法可以评估溶骨和骨重塑的局部影响。所提出的技术是完全自动化的,因此可以获得客观的结果,这些结果独立于人类观察者表现的变化。此外,分析全身数据所需的时间大大减少。

结果

使用 15 只(n=15)诱导右胫骨骨转移的小鼠的 MicroCT 随访数据集评估了该方法。所有动物均扫描了 3 次:基线、3 周和 7 周后。对于每个数据集,我们的方法都用于定位胫骨并测量骨体积。为了评估自动方法的性能,还由两名人类专家进行了骨体积测量。对自动方法与人类观察者的结果进行定量比较表明,观察者之间(r=0.9996)、第一个观察者与提出的方法之间(r=0.9939)以及第二个观察者与提出的方法之间(r=0.9937)存在高度相关性。此外,Bland-Altman 图显示观察者和自动方法之间具有极好的一致性(观察者之间的骨体积变异性,0.59±0.64%;Obs1 与 Auto,0.26±2.53%和 Obs2 与 Auto,-0.33±2.61%)。统计分析没有发现手动和自动骨测量之间有显著差异(p=0.10),因此该方法产生了最佳结果。这也可以通过基于骨体积的图形表示在视觉上得到证实。骨厚度测量的性能是定性评估的。

结论

我们得出的结论是,所提出的方法允许以准确和稳健的方式在纵向数据中测量和可视化局部骨体积和厚度,证明自动工具是手动分析的快速且用户友好的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7089/3399070/b3862b5cc0e9/11307_2011_522_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验