Procter & Gamble Eurocor, Strombeek-Bever, Belgium.
ALTEX. 2011;28(3):211-25. doi: 10.14573/altex.2011.3.211.
There is an urgent need to develop data integration and testing strategy frameworks allowing interpretation of results from animal alternative test batteries. To this end, we developed a Bayesian Network Integrated Testing Strategy (BN ITS) with the goal to estimate skin sensitization hazard as a test case of previously developed concepts (Jaworska et al., 2010). The BN ITS combines in silico, in chemico, and in vitro data related to skin penetration, peptide reactivity, and dendritic cell activation, and guides testing strategy by Value of Information (VoI). The approach offers novel insights into testing strategies: there is no one best testing strategy, but the optimal sequence of tests depends on information at hand, and is chemical-specific. Thus, a single generic set of tests as a replacement strategy is unlikely to be most effective. BN ITS offers the possibility of evaluating the impact of generating additional data on the target information uncertainty reduction before testing is commenced.
目前迫切需要开发数据集成和测试策略框架,以便能够解释动物替代测试组合的结果。为此,我们开发了一个贝叶斯网络综合测试策略 (BNITS),目的是评估皮肤致敏危害,作为先前开发概念的一个测试案例 (Jaworska 等人,2010 年)。BNITS 将与皮肤穿透、肽反应性和树突状细胞激活相关的计算、化学和体外数据相结合,并通过信息价值 (VoI) 指导测试策略。该方法为测试策略提供了新的见解:不存在一种最佳测试策略,但最佳测试顺序取决于手头的信息,并且具有化学特异性。因此,作为替代策略的单一通用测试集不太可能是最有效的。BNITS 提供了在开始测试之前评估生成额外数据对目标信息不确定性减少的影响的可能性。