Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, D-10115 Berlin, Germany.
J Neurosci. 2011 Oct 12;31(41):14624-30. doi: 10.1523/JNEUROSCI.3412-11.2011.
The predicted reward of different behavioral options plays an important role in guiding decisions. Previous research has identified reward predictions in prefrontal and striatal brain regions. Moreover, it has been shown that the neural representation of a predicted reward is similar to the neural representation of the actual reward outcome. However, it has remained unknown how these representations emerge over the course of learning and how they relate to decision making. Here, we sought to investigate learning of predicted reward representations using functional magnetic resonance imaging and multivariate pattern classification. Using a pavlovian conditioning procedure, human subjects learned multiple novel cue-outcome associations in each scanning run. We demonstrate that across learning activity patterns in the orbitofrontal cortex, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum, coding the value of predicted rewards become similar to the patterns coding the value of actual reward outcomes. Furthermore, we provide evidence that predicted reward representations in the striatum precede those in prefrontal regions and that representations in the DLPFC are linked to subsequent value-based choices. Our results show that different brain regions represent outcome predictions by eliciting the neural representation of the actual outcome. Furthermore, they suggest that reward predictions in the DLPFC are directly related to value-based choices.
不同行为选择的预测奖励在指导决策中起着重要作用。先前的研究已经确定了前额叶和纹状体脑区的奖励预测。此外,已经表明,预测奖励的神经表示与实际奖励结果的神经表示相似。然而,这些表示如何在学习过程中出现以及它们与决策的关系仍然未知。在这里,我们试图使用功能磁共振成像和多元模式分类来研究预测奖励表示的学习。使用巴甫洛夫条件反射程序,人类受试者在每次扫描运行中学习多个新的线索-结果关联。我们证明,在眶额皮层、背外侧前额叶皮层 (DLPFC) 和背侧纹状体中,编码预测奖励价值的活动模式变得与编码实际奖励结果价值的模式相似。此外,我们提供的证据表明,纹状体中的预测奖励表示先于前额叶区域中的表示,并且 DLPFC 中的表示与随后的基于价值的选择有关。我们的结果表明,不同的大脑区域通过引发实际结果的神经表示来表示结果预测。此外,它们表明 DLPFC 中的奖励预测与基于价值的选择直接相关。