Guerrero Ricardo, Wolz Robin, Rueckert Daniel
Biomedical Image Analysis Group, Imperial College London.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):566-73. doi: 10.1007/978-3-642-23629-7_69.
The identification of anatomical landmarks in medical images is an important task in registration and morphometry. Manual labeling is time consuming and prone to observer errors. We propose a manifold learning procedure, based on Laplacian Eigenmaps, that learns an embedding from patches drawn from multiple brain MR images. The position of the patches in the manifold can be used to predict the location of the landmarks via regression. New images are embedded in the manifold and the resulting coordinates are used to predict the landmark position in the new image. The output of multiple regressors is fused in a weighted fashion to boost the accuracy and robustness. We demonstrate this framework in 3D brain MR images from the ADNI database. We show an accuracy of -0.5mm, an increase of at least two fold when compared to traditional approaches such as registration or sliding windows.
在医学图像中识别解剖标志是配准和形态测量中的一项重要任务。手动标注既耗时又容易出现观察者误差。我们提出了一种基于拉普拉斯特征映射的流形学习方法,该方法从多个脑部磁共振图像中提取的图像块学习嵌入。流形中图像块的位置可通过回归用于预测解剖标志的位置。将新图像嵌入到流形中,所得坐标用于预测新图像中的解剖标志位置。多个回归器的输出以加权方式融合,以提高准确性和鲁棒性。我们在来自阿尔茨海默病神经成像计划(ADNI)数据库的三维脑部磁共振图像中展示了这个框架。我们展示了-0.5毫米的精度,与诸如配准或滑动窗口等传统方法相比,精度提高了至少两倍。