Suppr超能文献

具有不确定配准的纵向脑磁共振成像分析

Longitudinal brain MRI analysis with uncertain registration.

作者信息

Simpson Ivor J A, Woolrich Mark W, Groves Adrian R, Schnabel Julia A

机构信息

Institute of Biomedical Engineering, University of Oxford, Oxford.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):647-54. doi: 10.1007/978-3-642-23629-7_79.

Abstract

In this paper we propose a novel approach for incorporating measures of spatial uncertainty, which are derived from non-rigid registration, into spatially normalised statistics. Current approaches to spatially normalised statistical analysis use point-estimates of the registration parameters. This is limiting as the registration will rarely be completely accurate, and therefore data smoothing is often used to compensate for the uncertainty of the mapping. We derive localised measurements of spatial uncertainty from a probabilistic registration framework, which provides a principled approach to image smoothing. We evaluate our method using longitudinal deformation features from a set of MR brain images acquired from the Alzheimer's Disease Neuroimaging Initiative. These images are spatially normalised using our probabilistic registration algorithm. The spatially normalised longitudinal features are adaptively smoothed according to the registration uncertainty. The proposed adaptive smoothing shows improved classification results, (84% correct Alzheimer's Disease vs. controls), over either not smoothing (79.6%), or using a Gaussian filter with sigma = 2mm (78.8%).

摘要

在本文中,我们提出了一种将从非刚性配准中得出的空间不确定性度量纳入空间归一化统计的新方法。当前用于空间归一化统计分析的方法使用配准参数的点估计。这存在局限性,因为配准很少会完全准确,因此常常使用数据平滑来补偿映射的不确定性。我们从概率配准框架中得出空间不确定性的局部度量,该框架为图像平滑提供了一种有原则的方法。我们使用从阿尔茨海默病神经影像倡议(Alzheimer's Disease Neuroimaging Initiative)获取的一组脑部磁共振图像的纵向变形特征来评估我们的方法。这些图像使用我们的概率配准算法进行空间归一化。根据配准不确定性对空间归一化的纵向特征进行自适应平滑。与不平滑(79.6%)或使用标准差为2毫米的高斯滤波器(78.8%)相比,所提出的自适应平滑显示出更好的分类结果(阿尔茨海默病与对照组的正确分类率为84%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验