Suppr超能文献

基于OBB树的多仿射对数恶魔的几何感知多尺度图像配准

Geometry-aware multiscale image registration via OBBTree-based polyaffine log-demons.

作者信息

Seiler Christof, Pennec Xavier, Reyes Mauricio

机构信息

Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):631-8. doi: 10.1007/978-3-642-23629-7_77.

Abstract

Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.

摘要

非线性图像配准是图像分析许多领域中的重要工具。例如,在对一组大脑进行形态测量研究时,会分析图像之间的自由形式变形,以描述结构解剖变异性。由于缺乏关于形状变化的易于表达的先验信息,这种简单的变形模型是合理的。由于个体间变形的潜在先验信息不同,将用于脑成像的相同算法应用于骨科图像可能并非最佳选择。特别是,使用无信息的变形先验通常会导致远离预期解的局部最小值。为了提高鲁棒性并促进具有解剖学意义的变形,我们提出了一种局部仿射和几何感知配准算法,该算法能自动适应数据。我们基于对数域恶魔算法,并在具有自然多尺度结构的配准中引入一种新型的基于OBB树的正则化。正则化模型由通过对数表示的局部仿射变换层次结构组成。在下颌骨上的实验表明,当用于初始化恶魔算法时,其准确性和鲁棒性得到了提高,甚至与恶魔算法直接比较时性能相似,但自由度显著降低。这缩小了多仿射配准和非刚性配准之间的差距,并为统计分析配准结果开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验