Suppr超能文献

泊松回归模型在估计季节性波动的峰谷比方面优于几何模型:一项模拟研究。

Poisson regression models outperform the geometrical model in estimating the peak-to-trough ratio of seasonal variation: a simulation study.

机构信息

Department of Cardiology, Center for Cardiovascular Research, Aalborg Hospital, Aarhus University Hospital, Sdr. Skovvej 15, DK-9000 Aalborg, Denmark.

出版信息

Comput Methods Programs Biomed. 2011 Dec;104(3):333-40. doi: 10.1016/j.cmpb.2011.07.016. Epub 2011 Oct 11.

Abstract

INTRODUCTION

Several statistical methods of assessing seasonal variation are available. Brookhart and Rothman [3] proposed a second-order moment-based estimator based on the geometrical model derived by Edwards [1], and reported that this estimator is superior in estimating the peak-to-trough ratio of seasonal variation compared with Edwards' estimator with respect to bias and mean squared error. Alternatively, seasonal variation may be modelled using a Poisson regression model, which provides flexibility in modelling the pattern of seasonal variation and adjustments for covariates.

METHOD

Based on a Monte Carlo simulation study three estimators, one based on the geometrical model, and two based on log-linear Poisson regression models, were evaluated in regards to bias and standard deviation (SD). We evaluated the estimators on data simulated according to schemes varying in seasonal variation and presence of a secular trend. All methods and analyses in this paper are available in the R package Peak2Trough[13].

RESULTS

Applying a Poisson regression model resulted in lower absolute bias and SD for data simulated according to the corresponding model assumptions. Poisson regression models had lower bias and SD for data simulated to deviate from the corresponding model assumptions than the geometrical model.

CONCLUSION

This simulation study encourages the use of Poisson regression models in estimating the peak-to-trough ratio of seasonal variation as opposed to the geometrical model.

摘要

简介

有几种评估季节性变化的统计方法。Brookhart 和 Rothman [3] 提出了一种基于 Edwards [1] 推导的几何模型的二阶矩估计量,并报告称,与 Edwards 的估计量相比,该估计量在估计季节性变化的峰值到低谷比方面具有优势,在偏差和均方误差方面。或者,可以使用泊松回归模型来对季节性变化进行建模,泊松回归模型在对季节性变化模式进行建模以及对协变量进行调整方面具有灵活性。

方法

基于蒙特卡罗模拟研究,评估了三种估计量,一种基于几何模型,另外两种基于对数线性泊松回归模型,评估了它们在偏差和标准差(SD)方面的性能。我们根据季节性变化和存在季节性趋势的方案对数据进行了模拟,然后对估计量进行了评估。本文中的所有方法和分析都可在 R 包 Peak2Trough[13]中使用。

结果

对于根据相应模型假设模拟的数据,应用泊松回归模型会导致较小的绝对偏差和 SD。对于偏离相应模型假设的数据,泊松回归模型的偏差和 SD 小于几何模型。

结论

这项模拟研究鼓励使用泊松回归模型来估计季节性变化的峰值到低谷比,而不是使用几何模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验