Huang Kevin C Y, Jun Young Chul, Seo Min-Kyo, Brongersma Mark L
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
Opt Express. 2011 Sep 26;19(20):19084-92. doi: 10.1364/OE.19.019084.
Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.
当前用于计算与任意几何形状的光学天线耦合的量子发射器发射增强的方法,依赖于分析从发射器流出的总坡印廷矢量功率流或全场数值模拟中的并矢格林函数。不幸的是,这些方法并未提供有关主导能量衰减路径性质的信息。我们提出了一种新方法,该方法能够对天线捕获的发射器输出功率流以及随后向远场的再辐射功率流进行严格的分离、量化和可视化。这种分析揭示了发射器/天线耦合机制前所未有的细节,从而为用于传感、有源等离子体和超材料以及量子光学的强相互作用发射器/天线系统开辟了新的设计策略。