Suppr超能文献

理解介电介质、基底和深度对准三维等离子体纳米结构的电场和表面增强拉曼光谱的影响。

Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.

作者信息

Xu Jiajie, Kvasnička Pavel, Idso Matthew, Jordan Roger W, Gong Heng, Homola Jiří, Yu Qiuming

机构信息

Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Opt Express. 2011 Oct 10;19(21):20493-505. doi: 10.1364/OE.19.020493.

Abstract

The local electric field distribution and the effect of surface-enhanced Raman spectroscopy (SERS) were investigated on the quasi-3D (Q3D) plasmonic nanostructures formed by gold nanohole and nanodisc array layers physically separated by a dielectric medium. The local electric fields at the top gold nanoholes and bottom gold nanodiscs as a function of the dielectric medium, substrate, and depth of Q3D plasmonic nanostructures upon the irradiation of a 785 nm laser were calculated using the three-dimensional finite-difference time-domain (3D-FDTD) method. The intensity of the maximum local electric fields was shown to oscillate with the depth and the stronger local electric fields occurring at the top or bottom gold layer strongly depend on the dielectric medium, substrate, and depth of the nanostructure. This phenomenon was determined to be related to the Fabry-Pérot interference effect and the interaction of localized surface plasmons (LSPs). The enhancement factors (EFs) of SERS obtained from the 3D-FDTD simulations were compared to those calculated from the SERS experiments conducted on the Q3D plasmonic nanostructures fabricated on silicon and ITO coated glass substrates with different depths. The same trend was obtained from both methods. The capabilities of tuning not only the intensity but also the location of the maximum local electric fields by varying the depth, dielectric medium, and substrate make Q3D plasmonic nanostructures well suited for highly sensitive and reproducible SERS detection and analysis.

摘要

研究了由金纳米孔和纳米盘阵列层通过介电介质物理分离形成的准三维(Q3D)等离子体纳米结构上的局部电场分布和表面增强拉曼光谱(SERS)效应。使用三维有限差分时域(3D-FDTD)方法计算了在785 nm激光照射下,顶部金纳米孔和底部金纳米盘处的局部电场随介电介质、基底以及Q3D等离子体纳米结构深度的变化。结果表明,最大局部电场强度随深度振荡,且在顶部或底部金层出现的较强局部电场强烈依赖于介电介质、基底和纳米结构的深度。该现象被确定与法布里-珀罗干涉效应和局域表面等离子体(LSPs)的相互作用有关。将从3D-FDTD模拟获得的SERS增强因子(EFs)与在不同深度的硅和ITO涂层玻璃基底上制备的Q3D等离子体纳米结构上进行的SERS实验计算得到的增强因子进行了比较。两种方法得到了相同的趋势。通过改变深度、介电介质和基底,不仅可以调节最大局部电场的强度,还可以调节其位置,这使得Q3D等离子体纳米结构非常适合用于高灵敏度和可重复的SERS检测与分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验