Department of Chemical Engineering, Center for Nanotechnology, University of Washington, Seattle, WA 98195, USA.
Nanotechnology. 2010 Sep 3;21(35):355301. doi: 10.1088/0957-4484/21/35/355301. Epub 2010 Aug 4.
A new method was developed to fabricate unique gold quasi-3D plasmonic nanostructures on poly(dimethylsiloxane) PDMS and 2D nanohole arrays on silicon as surface-enhanced Raman scattering (SERS) substrates using electron beam lithography (EBL) with negative tone resist Ma-N 2403 and soft lithography. The size and shape of nanopillars fabricated by EBL were well controlled via different beam conditions. An enhancement factor (EF) as high as 6.4 x 10(5) was obtained for 4-mercaptopyridine molecules adsorbed on the gold quasi-3D nanostructure array on PDMS with 400 nm diameter, 100 nm spacing and 300 nm depth, while no enhancement was observed for the gold 2D nanohole array on silicon with the same diameter and spacing. The experimental results were confirmed by finite-difference time-domain (FDTD) calculations. Furthermore, the calculated total electric fields showed that the strong SERS exhibited by the gold quasi-3D nanostructure arrays on PDMS is due to the strong localized electric fields at the gold-air interface of the bottom gold nanodisc. The strong and reproducible SERS spectroscopy for molecules adsorbed on precisely controlled gold quasi-3D nanostructure arrays on PDMS makes it possible for the integration of SERS-active nanopatterns into microfluidic devices as chemical and biological sensors with molecular specificity.
采用电子束光刻(EBL)和软光刻技术,以负性电子束抗蚀剂 Ma-N 2403 为材料,在聚二甲基硅氧烷(PDMS)上制备独特的金准 3D 等离子体纳米结构和硅上的 2D 纳米孔阵列作为表面增强拉曼散射(SERS)基底。通过不同的光束条件,可以很好地控制 EBL 制备的纳米柱的尺寸和形状。在 PDMS 上制备的直径为 400nm、间距为 100nm、深度为 300nm 的金准 3D 纳米结构阵列上吸附的 4-巯基吡啶分子的增强因子(EF)高达 6.4×10^5,而在具有相同直径和间距的硅上的金 2D 纳米孔阵列上则没有观察到增强。实验结果通过有限差分时间域(FDTD)计算得到了证实。此外,计算出的总电场表明,PDMS 上的金准 3D 纳米结构阵列表现出的强 SERS 归因于底部金纳米盘的金-空气界面处的强局域电场。吸附在精确控制的金准 3D 纳米结构阵列上的分子表现出的强且可重现的 SERS 光谱使得将 SERS 活性纳米图案集成到具有分子特异性的微流控器件中作为化学和生物传感器成为可能。