Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220, Aalborg, Denmark.
J Fluoresc. 2012 Jan;22(1):323-37. doi: 10.1007/s10895-011-0963-7. Epub 2011 Oct 14.
Continuous 295 nm excitation of whey protein bovine apo-α-lactalbumin (apo-bLA) results in an increase of tryptophan fluorescence emission intensity, in a progressive red-shift of tryptophan fluorescence emission, and breakage of disulphide bridges (SS), yielding free thiol groups. The increase in fluorescence emission intensity upon continuous UV-excitation is correlated with the increase in concentration of free thiol groups in apo-bLA. UV-excitation and consequent SS breakage induce conformational changes on apo-bLA molecules, which after prolonged illumination display molten globule spectral features. The rate of tryptophan fluorescence emission intensity increase at 340 nm with excitation time increases with temperature in the interval 9.3-29.9°C. The temperature-dependent 340 nm emission kinetic traces were fitted by a 1st order reaction model. Native apo-bLA molecules with intact SS bonds and low tryptophan emission intensity are gradually converted upon excitation into apo-bLA molecules with disrupted SS, molten-globule-like conformation, high tryptophan emission intensity and red-shifted tryptophan emission. Experimental Ahrrenius activation energy was 21.8 ± 2.3 kJ x mol(-1). Data suggests that tryptophan photoionization from the S(1) state is the likely pathway leading to photolysis of SS in apo-bLA. Photoionization mechanism(s) of tryptophan in proteins and in solution and the activation energy of tryptophan photoionization from S(1) leading to SS disruption in proteins are discussed. The observations present in this paper raise concern regarding UV-light pasteurization of milk products. Though UV-light pasteurization is a faster and cheaper method than traditional thermal denaturation, it may also lead to loss of structure and functionality of milk proteins.
连续的 295nm 激发乳清蛋白牛脱辅基白蛋白(apo-bLA)会导致色氨酸荧光发射强度增加,色氨酸荧光发射逐渐红移,并打断二硫键(SS),产生游离巯基。apo-bLA 中游离巯基浓度的增加与连续 UV 激发时荧光发射强度的增加相关。UV 激发和随后的 SS 断裂诱导 apo-bLA 分子构象变化,经过长时间光照后显示出无规卷曲状态的光谱特征。在 9.3-29.9°C 的温度范围内,随着激发时间的增加,340nm 处色氨酸荧光发射强度的增加率随温度升高而增加。温度依赖性的 340nm 发射动力学轨迹通过一级反应模型拟合。具有完整 SS 键和低色氨酸发射强度的天然 apo-bLA 分子在激发下逐渐转化为具有破坏的 SS、无规卷曲样构象、高色氨酸发射强度和红移色氨酸发射的 apo-bLA 分子。实验 Ahrrenius 活化能为 21.8±2.3kJ/mol。数据表明,色氨酸从 S(1)态的光离解可能是导致 apo-bLA 中 SS 光解的途径。讨论了蛋白质中色氨酸的光离解机制(s)和溶液中的色氨酸以及色氨酸从 S(1)光离解到蛋白质中 SS 破坏的活化能。本文中的观察结果引起了对乳制品 UV 光巴氏杀菌的关注。虽然 UV 光巴氏杀菌比传统的热变性更快、更便宜,但它也可能导致牛奶蛋白结构和功能的丧失。