Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
Dalton Trans. 2020 Nov 25;49(45):16082-16094. doi: 10.1039/d0dt01380c.
Cu(i) P-type ATPases are transmembrane primary active ion pumps that catalyze the extrusion of copper ions across cellular membranes. Their activity is critical in controlling copper levels in all kingdoms of life. Biochemical and structural characterization established the structural framework by which Cu-pumps perform their function. However, the details of the overall mechanism of transport (uniporter vs. cotransporter) and electrogenicity still remain elusive. In this work, we developed a platform to reconstitute the model Cu(i)-pump from E. coli (EcCopA) in artificial lipid bilayer small unilamellar vesicles (SUVs) to quantitatively characterize the metal substrate, putative counter-ions and charge translocation. By encapsulating in the liposome lumen fluorescence detector probes (CTAP-3, pyranine and oxonol VI) responsive to diverse stimuli (Cu(i), pH and membrane potential), we correlated substrate, secondary-ion translocation and charge movement events in EcCopA proteoliposomes. This platform centered on multiple fluorescence reporters allowed study of the mechanism and translocation kinetic parameters in real-time for wild-type EcCopA and inactive mutants. The maximal initial Cu(i) transport rate of 165 nmol Cu(i) mg-1 min-1 and KM, Cu(I) = 0.15 ± 0.07 μM was determined with this analysis. We reveal that Cu(i) pumps are primary-active uniporters and electrogenic. The Cu(i) translocation cycle does not require proton counter-transport resulting in electrogenic generation of transmembrane potential upon translocation of one Cu(i) per ATP hydrolysis cycle. Thus, mechanistic differences between Cu(i) pumps and other better characterized P-type ATPases are discussed. The platform opens the venue to study translocation events and mechanisms of transport in other transition metal P-type ATPase pumps.
Cu(i) P 型 ATP 酶是跨膜的初级主动离子泵,可催化铜离子跨细胞膜排出。它们的活性对于控制所有生命领域的铜水平至关重要。生化和结构特征确定了 Cu-泵发挥其功能的结构框架。然而,整体运输机制(单向转运体与协同转运体)和电动性的细节仍然难以捉摸。在这项工作中,我们开发了一个平台,可在人工脂质双层小单层囊泡 (SUV) 中重新构建来自大肠杆菌 (EcCopA) 的模型 Cu(i)-泵,以定量表征金属底物、假定的反离子和电荷转移。通过将荧光探测器探针 (CTAP-3、芘和 oxonol VI) 包封在脂质体腔中,这些探针对多种刺激(Cu(i)、pH 和膜电位)有响应,我们将 EcCopA 脂囊泡中的底物、二级离子转运和电荷移动事件相关联。该平台以多个荧光报告器为中心,允许对野生型 EcCopA 和无活性突变体的机制和转运动力学参数进行实时研究。通过这种分析,确定了 165 nmol Cu(i) mg-1 min-1 的最大初始 Cu(i) 转运速率和 KM,Cu(I)= 0.15 ± 0.07 μM。我们揭示 Cu(i) 泵是初级主动单向转运体和电动的。Cu(i) 转运循环不需要质子反向转运,导致每水解一个 ATP 循环转运一个 Cu(i) 就会产生跨膜电位的电动生成。因此,讨论了 Cu(i) 泵与其他特征更明确的 P 型 ATP 酶之间的机制差异。该平台为研究其他过渡金属 P 型 ATP 酶泵的转运事件和转运机制开辟了途径。