Suppr超能文献

明确不确定性的类型:模型何时准确,不确定性何时小?

Clarifying types of uncertainty: when are models accurate, and uncertainties small?

机构信息

Cox Associates and University of Colorado, 503 Franklin St., Denver, CO 80218, USA.

出版信息

Risk Anal. 2011 Oct;31(10):1530-3; discussion 1538-42. doi: 10.1111/j.1539-6924.2011.01706.x.

Abstract

Professor Aven has recently noted the importance of clarifying the meaning of terms such as "scientific uncertainty" for use in risk management and policy decisions, such as when to trigger application of the precautionary principle. This comment examines some fundamental conceptual challenges for efforts to define "accurate" models and "small" input uncertainties by showing that increasing uncertainty in model inputs may reduce uncertainty in model outputs; that even correct models with "small" input uncertainties need not yield accurate or useful predictions for quantities of interest in risk management (such as the duration of an epidemic); and that accurate predictive models need not be accurate causal models.

摘要

Aven 教授最近指出,在风险管理和政策决策(如何时触发预防性原则的应用)中,澄清“科学不确定性”等术语的含义非常重要。这篇评论通过展示增加模型输入中的不确定性可能会降低模型输出中的不确定性,即使是具有“小”输入不确定性的正确模型也不一定能对风险管理中感兴趣的数量(如疫情持续时间)产生准确或有用的预测,以及准确的预测模型不一定是准确的因果模型,来探讨努力定义“准确”模型和“小”输入不确定性所面临的一些基本概念挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验