Suppr超能文献

论图形卡在执行高级蒙特卡罗方法大规模并行模拟中的效用。

On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods.

作者信息

Lee Anthony, Yau Christopher, Giles Michael B, Doucet Arnaud, Holmes Christopher C

机构信息

Oxford-Man Institute, Eagle House, Walton Well Road, Oxford OX2 6ED, UK.

出版信息

J Comput Graph Stat. 2010 Dec 1;19(4):769-789. doi: 10.1198/jcgs.2010.10039.

Abstract

We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design.

摘要

我们展示了一个关于利用图形卡执行高级蒙特卡罗方法大规模并行模拟的案例研究。图形卡包含多个图形处理单元(GPU),是自成一体的并行计算设备,可安装在传统台式机和笔记本电脑中,可被视为下一代多核处理器的原型。对于某些基于群体的蒙特卡罗算法类别,它们提供大规模并行模拟,相较于传统分布式多核处理器,具有价格便宜、易于获取、易于维护、易于编码、功耗低的专用本地设备等额外优势。在一组典型的随机模拟示例上,包括基于群体的马尔可夫链蒙特卡罗方法和序贯蒙特卡罗方法,我们发现相较于传统单线程计算机代码,加速比达到了35至500倍。我们的研究结果表明,通过提供廉价且易于获取的多核计算,GPU有潜力促进统计建模在复杂数据丰富领域的发展。我们认为我们观察到的加速比应促使更广泛地使用可并行化模拟方法,并在方法设计上给予更多关注。

相似文献

引用本文的文献

3
Massive parallelization boosts big Bayesian multidimensional scaling.大规模并行化提升了大型贝叶斯多维缩放。
J Comput Graph Stat. 2021;30(1):11-24. doi: 10.1080/10618600.2020.1754226. Epub 2020 Jun 8.
4
Bayesian Neural Networks for Selection of Drug Sensitive Genes.用于选择药物敏感基因的贝叶斯神经网络
J Am Stat Assoc. 2018;113(523):955-972. doi: 10.1080/01621459.2017.1409122. Epub 2018 Jun 28.
5
The Hamming Ball Sampler.汉明球采样器。
J Am Stat Assoc. 2017 Sep 3;112(520):1598-1611. doi: 10.1080/01621459.2016.1222288. eCollection 2017.
6
Bayesian Lasso and multinomial logistic regression on GPU.基于图形处理器的贝叶斯套索和多项逻辑回归
PLoS One. 2017 Jun 28;12(6):e0180343. doi: 10.1371/journal.pone.0180343. eCollection 2017.
8
A general construction for parallelizing Metropolis-Hastings algorithms.一种并行化 Metropolis-Hastings 算法的通用构造。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17408-13. doi: 10.1073/pnas.1408184111. Epub 2014 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验