Valisena S, Palumbo M, Parolin C, Palú G, Meloni G A
Institute of Microbiology, University of Padova Medical School, Italy.
Biochem Pharmacol. 1990 Aug 1;40(3):431-6. doi: 10.1016/0006-2952(90)90540-2.
The uptake of the quinolone drug norfloxacin by Escherichia coli was investigated at initial rate kinetics at different pH and monovalent/divalent metal ion concentration. The results support a simple diffusion mechanism for quinolone incorporation into cells. The uptake process decreases under acidic conditions. The presence of Na+ or K+ ions does not affect the results to an appreciable extent, whereas divalent ions cause a dramatic decrease in drug incorporation. The antibacterial activity, evaluated under identical experimental conditions, shows a direct relationship with the uptake data. As a general explanation for the above results it is suggested that the ability of the drug to penetrate into cells is a function of its net charge. The molecule in the zwitterionic form exhibits maximum permeation properties, whereas the uptake is remarkably reduced when the drug bears a net charge as a result of ionization or complex formation with bivalent ions. These results allow further insight into the mechanism of quinolone access to the intracellular compartment.