Romanelli Pantaleo, Bravin Alberto
Cyberknife Radiosurgery Center, Centro Diagnostico Italiano (CDI), Milano, Italy.
Neurol Res. 2011 Oct;33(8):825-31. doi: 10.1179/016164111X13123658647445.
Synchrotron-generated X-ray microplanar beams (microbeams) are characterized by peculiar biological properties such as a remarkable tissue-sparing effect in healthy tissues including the central nervous system (CNS) and, as a direct consequence, the ability to deliver extremely high doses without induction of radionecrosis. Growing experimental evidence is showing remarkable tolerance of brain and spinal cord to irradiation with microbeam arrays delivering doses up to 400 Gy with a beam width up to 0·7 mm. Submillimetric beams can be delivered following a stereotactic design bringing to the target doses in the range of hundreds of Gray without harm to the surrounding tissues. Microbeam arrays can be used to generate cortical transections or subcortical lesions, thus enabling the non-invasive modulation of brain networks. This novel microradiosurgical approach is of great interest for the treatment of a variety of brain disorders, including functional diseases such as epilepsy and movement disorders.
同步加速器产生的X射线微平面束(微束)具有独特的生物学特性,例如在包括中枢神经系统(CNS)在内的健康组织中具有显著的组织 sparing 效应,因此能够在不引起放射性坏死的情况下传递极高剂量。越来越多的实验证据表明,脑和脊髓对微束阵列照射具有显著的耐受性,微束阵列可传递高达400 Gy的剂量,束宽可达0·7 mm。亚毫米束可按照立体定向设计进行传递,使靶区剂量达到数百格雷,而不会对周围组织造成损害。微束阵列可用于产生皮质横断或皮质下病变,从而实现对脑网络的非侵入性调节。这种新型的微放射外科方法对于治疗多种脑部疾病,包括癫痫和运动障碍等功能性疾病具有重要意义。 (注:原文中“tissue-sparing”的“sparing”可能有误,推测应为“sparing effect”即“ sparing 效应”,这里按推测翻译,若有误请按正确内容调整。)