BG Trauma Center, Department of Trauma and Reconstructive Surgery, Eberhard-Karls-University Tübingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany.
Eur Spine J. 2012 Mar;21(3):546-53. doi: 10.1007/s00586-011-2042-9. Epub 2011 Oct 18.
Restoration of the anterior spinal profile and regular load-bearing is the main goal treating anterior spinal defects in case of fracture. Over the past years, development and clinical usage of cages for vertebral body replacement have increased rapidly. For an enhanced stabilization of rotationally unstable fractures, additional antero-lateral implants are common. The purpose of this study was the evaluation of the biomechanical behaviour of a recently modified, in situ distractible vertebral body replacement (VBR) combined with a newly developed antero-lateral polyaxial plate and/or pedicle screws and rods using a full corpectomy model as fracture simulation.
Twelve human spinal specimens (Th12-L4) were tested in a six-degree-of-freedom spine tester applying pure moments of 7.5 Nm to evaluate the stiffness of three different test instrumentations using a total corpectomy L2 model: (1) VBR+antero-lateral plate; (2) VBR, antero-lateral plate+pedicle screws and rods and (3) VBR+pedicle screws and rods.
In the presented total corpectomy defect model, only the combined antero-posterior instrumentation (VBR, antero-lateral plate+pedicle screws and rods) could achieve higher stiffness in all three-movement planes than the intact specimen. In axial rotation, neither isolated anterior instrumentation (VBR+antero-lateral plate) nor isolated posterior instrumentation (VBR+pedicle screws and rods) could stabilize the total corpectomy compared to the intact state.
For rotationally unstable vertebral body fractures, only combined antero-posterior instrumentation could significantly decrease the range of motion (ROM) in all motion planes compared to the intact state.
在治疗骨折导致的前脊柱缺损时,恢复前脊柱轮廓和正常承重是主要目标。近年来,用于椎体置换的笼的发展和临床应用迅速增加。为了增强对旋转不稳定骨折的稳定性,通常需要附加前外侧植入物。本研究的目的是评估一种最近改良的、原位可分散的椎体置换(VBR)与新开发的前外侧多轴钢板和/或椎弓根螺钉和棒结合使用时的生物力学行为,采用全椎体切除术模型模拟骨折。
使用六自由度脊柱试验机对 12 个人体脊柱标本(Th12-L4)进行测试,施加 7.5Nm 的纯力矩,以评估三种不同测试仪器在使用全椎体切除术 L2 模型时的刚度:(1)VBR+前外侧板;(2)VBR、前外侧板+椎弓根螺钉和棒;(3)VBR+椎弓根螺钉和棒。
在所提出的全椎体切除术缺陷模型中,只有联合前后仪器(VBR、前外侧板+椎弓根螺钉和棒)才能在所有三个运动平面上实现比完整标本更高的刚度。在轴向旋转中,无论是单独的前侧仪器(VBR+前外侧板)还是单独的后侧仪器(VBR+椎弓根螺钉和棒)都无法像完整状态那样稳定全椎体切除术。
对于旋转不稳定的椎体骨折,只有联合前后仪器才能在所有运动平面上显著降低运动范围(ROM),与完整状态相比。