Point-of-Care Testing Center for Teaching and Research, Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA.
Clin Chem Lab Med. 2011 Oct;49(10):1637-46. doi: 10.1515/CCLM.2011.655.
The goal is to introduce visual performance mapping efficient for establishing acceptance criteria and facilitating decisions regarding the utility of hospital point-of-care devices. This approach uniquely reveals the quality of performance locally, as opposed to globally.
After presenting theoretical foundations, this study illustrates the approach by applying it to six hospital glucose meter systems (GMSs) using clinical multi-center (n=2767) and multi-system (n=613, n=100) observations.
LS MAD curves identified breakouts, that is, points where the locally-smoothed median absolute difference (LS MAD) curve exceeds the recommended error tolerance limit of 5 mg/dL (0.28 mmol/L). LS maximum absolute difference (MaxAD) breakthroughs, which occur where the LS MaxAD curve exceeds the 99th percentile of MaxADs from x=30-200 mg/dL (1.67-11.10 mmol/L), showed extreme error locations. A multi-sensor interference- and hematocrirt-correcting GMS displayed a flat LS MAD curve until it reached a breakout of 179 mg/dL (9.94 mmol/L) and generated breakthroughs that could affect bedside decision-making, but less erratically than other systems with inadequate performance for hospital critical care. We discovered Class I (meter high, reference low) and Class II (converse) discrepant values in some systems. Class I errors could lead to inappropriate insulin dosing and hypoglycemic episodes in tight glucose control.
LS MAD-MaxAD curves help assess the performance of point-of-care testing. Visual mapping of systematic and random errors locally over the entire analyte measurement range in a single integrated display is an advantage when considering the adverse impact of zones of poor quantitative performance on specific clinical applications, threshold-driven bedside decisions and the care of critically ill patients.
本研究旨在引入一种直观的视觉性能映射方法,用于制定接受标准,并为床边即时检测设备的临床应用提供决策依据。与传统方法相比,该方法可提供局部而非全局性能的评估。
在介绍理论基础后,本研究应用该方法对 6 种医院血糖仪系统(GMS)进行了分析,使用了来自多中心(n=2767)和多系统(n=613)的临床数据。
局部中位数绝对差(LS MAD)曲线识别了突破点,即局部平滑后的中位数绝对差(LS MAD)曲线超过 5mg/dL(0.28mmol/L)的推荐误差容忍限的点。LS 最大绝对差(MaxAD)突破点则发生在 LS MaxAD 曲线超过 30-200mg/dL(1.67-11.10mmol/L)范围内的最大 MaxAD 的第 99 百分位数时,表明存在极端误差位置。一款具有多传感器干扰和红细胞压积校正功能的 GMS 在达到 179mg/dL(9.94mmol/L)的突破点之前,LS MAD 曲线保持平坦,随后出现了可能影响床边决策的突破点,但与其他性能不足的系统相比,其波动较小,而后者可能对医院重症监护有不利影响。我们在一些系统中发现了 I 类(仪器高,参考低)和 II 类(相反)的差异值。在严格的血糖控制中,I 类误差可能导致胰岛素剂量不当和低血糖发作。
LS MAD-MaxAD 曲线有助于评估床边即时检测的性能。在单个集成显示器中,对整个分析物测量范围内的系统和随机误差进行局部直观映射,在考虑定量性能不良区域对特定临床应用、基于阈值的床边决策和重症患者护理的不利影响时具有优势。