Suppr超能文献

使用局部平滑中位数绝对差曲线评估即时血糖检测准确性。

Evaluation of point-of-care glucose testing accuracy using locally-smoothed median absolute difference curves.

作者信息

Kost Gerald J, Tran Nam K, Abad Victor J, Louie Richard F

机构信息

Point-of-Care Testing Center for Teaching and Research (POCT-CTR), University of California, Davis, CA 95616, USA.

出版信息

Clin Chim Acta. 2008 Mar;389(1-2):31-9. doi: 10.1016/j.cca.2007.11.019. Epub 2007 Dec 3.

Abstract

BACKGROUND

We introduce locally-smoothed (LS) median absolute difference (MAD) curves for the evaluation of hospital point-of-care (POC) glucose testing accuracy.

METHODS

Arterial blood samples (613) were obtained from a university hospital blood gas laboratory. Four hospital glucose meter systems (GMS) were tested against the YSI 2300 glucose analyzer for paired reference observations. We made statistical comparisons using conventional methods (e.g., linear regression, mean absolute differences).

RESULTS

Difference plots with superimposed ISO 15197 tolerance bands showed bias, scatter, heteroscedasticity, and erroneous results well. LS MAD curves readily revealed GMS accuracy patterns. Performance in hypoglycemic and hyperglycemic ranges erratically exceeded the recommended LS MAD error tolerance limit (5 mg/dl). Some systems showed acceptable (within LS MAD tolerance) or nearly acceptable performance in and around a tight glycemic control (TGC) interval of 80-110 mg/dl. Performance patterns varied in this interval, creating potential for discrepant therapeutic decisions.

CONCLUSIONS

Erroneous results demonstrated by ISO 15197-difference plots must be carefully considered. LS MAD curves draw on the unique human ability to recognize patterns quickly and discriminate accuracy visually. Performance standards should incorporate LS MAD curves and the recommended error tolerance limit of 5 mg/dl for hospital bedside glucose testing. Each GMS must be considered individually when assessing overall performance for therapeutic decision making in TGC.

摘要

背景

我们引入局部平滑(LS)中位数绝对差(MAD)曲线来评估医院即时检验(POC)血糖检测的准确性。

方法

从一家大学医院血气实验室获取613份动脉血样本。将四个医院血糖仪系统(GMS)与YSI 2300葡萄糖分析仪进行测试,以获得配对的参考观测值。我们使用传统方法(如线性回归、平均绝对差)进行统计比较。

结果

带有叠加ISO 15197公差带的差异图很好地显示了偏差、离散度、异方差性和错误结果。LS MAD曲线能够轻松揭示GMS的准确性模式。低血糖和高血糖范围内的性能不稳定地超过了推荐的LS MAD误差容限(5 mg/dl)。一些系统在80 - 110 mg/dl的严格血糖控制(TGC)区间内及周围表现出可接受(在LS MAD容限内)或近乎可接受的性能。在此区间内性能模式各不相同,这可能导致治疗决策出现差异。

结论

必须仔细考虑ISO 15197差异图所显示的错误结果。LS MAD曲线利用了人类快速识别模式和直观辨别准确性的独特能力。性能标准应纳入LS MAD曲线以及医院床边血糖检测推荐的5 mg/dl误差容限。在评估TGC中用于治疗决策的总体性能时,必须对每个GMS进行单独考虑。

相似文献

引用本文的文献

4
Computing the surveillance error grid analysis: procedure and examples.计算监测误差网格分析:步骤与示例。
J Diabetes Sci Technol. 2014 Jul;8(4):673-84. doi: 10.1177/1932296814539590. Epub 2014 Jun 13.
9
Analytical and clinical performance of blood glucose monitors.血糖仪的分析性能与临床性能
J Diabetes Sci Technol. 2010 Jan 1;4(1):84-97. doi: 10.1177/193229681000400111.

本文引用的文献

1
Introduction and evaluation of a computerised insulin protocol.计算机化胰岛素方案的介绍与评估
Intensive Care Med. 2007 Apr;33(4):591-6. doi: 10.1007/s00134-006-0484-z. Epub 2006 Dec 20.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验